PurposeTumor associated macrophages (TAMs) are considered with the capacity to have both negative and positive effects on tumor growth. The prognostic value of TAM for survival in patients with solid tumor remains controversial.Experimental DesignWe conducted a meta-analysis of 55 studies (n = 8,692 patients) that evaluated the correlation between TAM (detected by immunohistochemistry) and clinical staging, overall survival (OS) and disease free survival (DFS). The impact of M1 and M2 type TAM (n = 5) on survival was also examined.ResultsHigh density of TAM was significantly associated with late clinical staging in patients with breast cancer [risk ratio (RR) = 1.20 (95% confidence interval (CI), 1.14–1.28)] and bladder cancer [RR = 3.30 (95%CI, 1.56–6.96)] and with early clinical staging in patients with ovarian cancer [RR = 0.52 (95%CI, 0.35–0.77)]. Negative effects of TAM on OS was shown in patients with gastric cancer [RR = 1.64 (95%CI, 1.24–2.16)], breast cancer [RR = 8.62 (95%CI, 3.10–23.95)], bladder cancer [RR = 5.00 (95%CI, 1.98–12.63)], ovarian cancer [RR = 2.55 (95%CI, 1.60–4.06)], oral cancer [RR = 2.03 (95%CI, 1.47–2.80)] and thyroid cancer [RR = 2.72 (95%CI, 1.26–5.86)],and positive effects was displayed in patients with colorectal cancer [RR = 0.64 (95%CI, 0.43–0.96)]. No significant effect was showed between TAM and DFS. There was also no significant effect of two phenotypes of TAM on survival.ConclusionsAlthough some modest bias cannot be excluded, high density of TAM seems to be associated with worse OS in patients with gastric cancer, urogenital cancer and head and neck cancer, with better OS in patients with colorectal cancer.
B7-H3 is a member of the B7-family of co-stimulatory molecules, which has been shown to be broadly expressed in various tumor tissues, and which plays an important role in adaptive immune responses. The role of B7-H3 in osteosarcoma, however, remains unknown. In this study we used immunohistochemistry to analyze B7-H3 expression in 61 primary osteosarcoma tissues with case-matched adjacent normal tissues, and 37 osteochondroma and 20 bone fibrous dysplasia tissues. B7-H3 expression was expressed in 91.8% (56/61) of the osteosarcoma lesions, and the intensity of B7-H3 expression in osteosarcoma was significantly increased compared with adjacent normal tissues, osteochondroma and bone fibrous dysplasia tissues (p<0.001). Patients with high tumor B7-H3 levels had a significantly shorter survival time and recurrence time than patients with low tumor B7-H3 levels (p<0.001). Moreover, tumor B7-H3 expression inversely correlated with the number of tumor-infiltrating CD8+ T cells (p<0.05). In vitro, increasing expression of B7-H3 promotes osteosarcoma cell invasion, at least in part by upregulating matrix metalloproteinase-2 (MMP-2). In conclusion, our study provides the first evidence of B7-H3 expression in osteosarcoma cells as a potential mechanism controlling tumor immunity and invasive malignancy, and which is correlated with patients’ survival and metastasis.
Hypertrophic differentiation is not only the terminal process of endochondral ossification in the growth plate but is also an important pathological change in osteoarthritic cartilage. Collagen type II (COL2A1) was previously considered to be only a structural component of the cartilage matrix, but recently, it has been revealed to be an extracellular signaling molecule that can significantly suppress chondrocyte hypertrophy. However, the mechanisms by which COL2A1 regulates hypertrophic differentiation remain unclear. In our study, a Col2a1 p.Gly1170Ser mutant mouse model was constructed, and Col2a1 loss was demonstrated in homozygotes. Loss of Col2a1 was found to accelerate chondrocyte hypertrophy through the bone morphogenetic protein (BMP)-SMAD1 pathway. Upon interacting with COL2A1, integrin β1 (ITGB1), the major receptor for COL2A1, competed with BMP receptors for binding to SMAD1 and then inhibited SMAD1 activation and nuclear import. COL2A1 could also activate ITGB1-induced ERK1/2 phosphorylation and, through ERK1/2-SMAD1 interaction, it further repressed SMAD1 activation, thus inhibiting BMP-SMAD1-mediated chondrocyte hypertrophy. Moreover, COL2A1 expression was downregulated, while chondrocyte hypertrophic markers and BMP-SMAD1 signaling activity were upregulated in degenerative human articular cartilage. Our study reveals novel mechanisms for the inhibition of chondrocyte hypertrophy by COL2A1 and suggests that the degradation and decrease in COL2A1 might initiate and promote osteoarthritis progression.
Targeted delivery of a nanovaccine loaded with a tumor antigen and adjuvant to the lymph nodes (LNs) is an attractive approach for improving cancer immunotherapy outcomes. However, the application of this technique is restricted by the paucity of suitable tumorassociated antigens (TAAs) and the sophisticated technology required to identify tumor neoantigens. Here, we demonstrate that a self-assembling melittin-lipid nanoparticle (α-melittin-NP) that is not loaded with extra tumor antigens promotes whole tumor antigen release in situ and results in the activation of antigen-presenting cells (APCs) in LNs. Compared with free melittin, α-melittin-NPs markedly enhance LN accumulation and activation of APCs, leading to a 3.6-fold increase in antigen-specific CD8 + T cell responses. Furthermore, in a bilateral flank B16F10 tumor model, primary and distant tumor growth are significantly inhibited by α-melittin-NPs, with an inhibition rate of 95% and 92%, respectively. Thus, α-melittin-NPs induce a systemic anti-tumor response serving as an effective LN-targeted whole-cell nanovaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.