Due to improvements in high-performance computing (HPC) capabilities, many of today’s applications produce petabytes worth of data, causing bottlenecks within the system. Importance-based sampling methods, including our spatio-temporal hybrid data sampling method, are capable of resolving these bottlenecks. While our hybrid method has been shown to outperform existing methods, its effectiveness relies heavily on user parameters, such as histogram bins, error threshold, or number of regions. Moreover, the throughput it demonstrates must be higher to avoid becoming a bottleneck itself. In this article, we resolve both of these issues. First, we assess the effects of several user input parameters and detail techniques to help determine optimal parameters. Next, we detail and implement accelerated versions of our method using OpenMP and CUDA. Upon analyzing our implementations, we find 9.8× to 31.5× throughput improvements. Next, we demonstrate how our method can accept different base sampling algorithms and the effects these different algorithms have. Finally, we compare our sampling methods to the lossy compressor cuSZ in terms of data preservation and data movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.