Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv–v): metformin (100 or 200 mg/kg) and (vi–vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.
Hospital-acquired infections (HAIs) are considered to be a major global healthcare challenge, in large part because of the development of microbial resistance to currently approved antimicrobial drugs. HAIs are frequently preventable through infection prevention and control measures, with hand hygiene as a key activity. Improving hand hygiene was reported to reduce the transmission of healthcare-associated pathogens and HAIs. Alcohol-based hand sanitizers are commonly used due to their rapid action and broad spectrum of microbicidal activity, offering protection against bacteria and viruses. However, their frequent administration has been reported to be associated with many side effects, such as skin sensitivity, skin drying, and cracks, which promote further skin infections. Thus, there is an essential need to find alternative approaches to hand sanitation. Rhamnolipids are glycolipids produced by Pseudomonas aeruginosa, and were shown to have broad antimicrobial activity as biosurfactants. We have previously demonstrated the antimicrobial activity of rhamnolipid nano-micelles against selected drug-resistant Gram-negative (Salmonella Montevideo and Salmonella Typhimurium) and Gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae). To the best of our knowledge, the antimicrobial activity of rhamnolipid nano-micelles in comparison to alcohol-based hand sanitizers against microorganisms commonly causing HAIs in Egypt—such as Acinetobacter baumannii and Staphylococcus aureus—has not yet been studied. In the present work, a comparative study of the antibacterial activity of rhamnolipid nano-micelles versus alcohol-based hand sanitizers was performed, and their safety profiles were also assessed. It was demonstrated that rhamnolipid nano-micelles had a comparable antibacterial activity to alcohol-based hand sanitizer, with a better safety profile, i.e., rhamnolipid nano-micelles are unlikely to cause any harmful effects on the skin. Thus, rhamnolipid nano-micelles could be recommended to replace alcohol-based hand sanitizers; however, they must still be tested by healthcare workers in healthcare settings to ascertain their antimicrobial activity and safety.
Aluminum phosphide (AlP) poisoning is a serious medical emergency with a high mortality rate. The absence of an exact antidote for AlP poisoning necessitates the quest for alternative treatment options. The study sought to assess the efficacy of adding L-carnitine or medicated paraffin oil to the conventional approach of treatment employed in cases of acute AlP poisoning. We conducted a 1 year, randomized, controlled, parallel-group, single-blind clinical study. 96 individuals with acute AlP poisoning were randomly assigned to one of three groups. The standard AlP therapy was administered to all groups according to the Poison Control Center guidelines at the Ain-Shams University hospitals. All patients underwent a medical history review, clinical examination, and laboratory tests. The outcomes were assessed. The participants in the study groups had mean ages ranging from 25.6 to 26.3 years. The cases analyzed were evenly distributed between genders, with the majority originating from rural areas. The average delay time varied from 2.9 to 4.2 h. All patients in the study reported ingesting AlP during suicide attempts. 12 hours after admission, many clinical and biochemical data improved in both intervention groups including cytochrome c oxidase, caspase-3, caspase-9, catalase, and superoxide dismutase. The intervention groups required significantly less mechanical ventilation and had a lower mortality rate than the control group. Decontamination with paraffin oil could be advantageous for reducing the severity of AlP poisoning, improving prognosis, and lowering the mortality rate.
Gastric ulcer (GU) is a lesion in the gastric mucosa associated with excessive oxidative damage, inflammatory response, apoptotic events, and irritation which may develop into cancer. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Proanthocyanidins (PAs) are dietary flavonoids with numerous biological and pharmacological activities. In the current investigation, we studied the potential anti-ulcerative activity of PAs against acidified ethanol (HCl/ethanol)-caused gastric ulceration. Fifty male albino Wistar rats were allocated into five equal groups: control, HCl/ethanol (3 mL/kg), lansoprazole (LPZ, 30 mg/kg) + HCl/ethanol, and PAs (100 and 250 mg/kg) + HCl/ethanol. LPZ and PAs were applied one week before gastric ulcer induction. PAs pretreatment
Pollution is a worldwide environmental risk. Arsenic (As) is an environmental pollutant with a major health concern due to its toxic effects on multiple body organs, including the brain. Humans are exposed to As through eating contaminated food and water or via skin contact. Salix species (willow) are plants with medicinal efficacy. Salix subserrata Willd bark extract-loaded chitosan nanoparticles (SBE.CNPs) was formulated, characterized, and evaluated against As-induced neurotoxicity. The stem bark was selected for nanoparticle formulation based on HPLC–PDA-ESI–MS/MS profiling and in vitro antioxidant assessment using free radical scavenging activity. SBE.CNPs demonstrated an average un-hydrated diameter of 193.4 ± 24.5 nm and zeta potential of + 39.6 ± 0.4 mV with an encapsulation efficiency of 83.7 ± 4.3%. Compared to As-intoxicated rats, SBE.CNP-treated rats exhibited anxiolytic activity and memory-boosting as evidenced in open field test, light–dark activity box, and Y-maze. Also, it increased the antioxidant biomarkers, including superoxide dismutase and glutathione peroxidase associated with reducing the malondialdehyde levels and apoptotic activity. Besides this, SBE.CNPs maintained the brain architecture and downregulated both nuclear factor-kappa B and heme oxygenase-1 expression. These results suggest that SBE.CNP administration showed promising potent neuroprotective and antioxidative efficiencies against arsenic-induced oxidative threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.