cleavage. When applied to the basolateral surface of colonocytes, PAR 2 agonists and mast cell supernatant decreased transepithelial resistance, increased transepithelial flux of macromolecules, and induced redistribution of tight junction ZO-1 and occludin and perijunctional F-actin. When mast cells were co-cultured with colonocytes, mast cell degranulation increased paracellular permeability of colonocytes. This was prevented by a tryptase inhibitor. We determined the role of ERK1/2 and of -arrestins, which recruit ERK1/2 to PAR 2 in endosomes and retain ERK1/2 in the cytosol, on PAR 2 -mediated alterations in permeability. An ERK1/2 inhibitor abolished the effects of PAR 2 agonist on permeability and redistribution of F-actin. Downregulation of -arrestins with small interfering RNA inhibited PAR 2 -induced activation of ERK1/2 and suppressed PAR 2 -induced changes in permeability. Thus, mast cells signal to colonocytes in a paracrine manner by release of tryptase and activation of PAR 2 . PAR 2 couples to -arrestin-dependent activation of ERK1/2, which regulates reorganization of perijunctional F-actin to increase epithelial permeability. These mechanisms may explain the increased epithelial permeability of the intestine during stress and inflammation.
The traditional view on the role of serine proteases in tumor biology has changed with the recent discovery of a family of protease-activated receptors (PARs). In this study we explored the expression and functional role of the thrombin receptor PAR-1 in human colon cancer cells. Reverse transcriptase-polymerase chain reaction analysis showed that PAR-1 mRNAs are present in 11 of 14 human colon cancer cell lines tested but not in normal human colonic epithelial cells. This is in line with the immunolocalization of PAR-1 in human colon tumors and its absence in normal human colonic mucosa. The functional significance of the aberrant expression of PAR-1 in colon cancer cells was then investigated. We found that 1) a prompt increase in intracellular calcium concentration was observed on thrombin (10 nmol/L) or PAR-1 agonist AP1 (100 micro mol/L) challenge of HT29 cells; 2) HT29 quiescent cells treated with thrombin (0.01 to 20 nmol/L) or AP1 (1 to 300 micro mol/L) exhibited dramatic mitogenic responses (3.5-fold increase in cell number). Proliferative effects of thrombin or AP1 were also observed in other colon cancer cell lines expressing PAR-1. This effect was reversed by the MEK inhibitor PD98059 in consonance with the ability of thrombin or AP1 to induce phosphorylation of p42/p44 extracellular-regulated protein kinases. 3) PAR-1 activation by thrombin or AP1 led to a two-fold increase in cell motility of wounded HT29-D4. Our results demonstrate for the first time the aberrant expression of the functional thrombin receptor PAR-1 in colon cancers and its important involvement in cell proliferation and motility. Thrombin should now be considered as a growth factor for human colon cancer.
SummaryThe protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor that is cleaved and activated by trypsin. We investigated the expression of PAR-2 and the role of trypsin in cell proliferation in human colon cancer cell lines. A total of 10 cell lines were tested for expression of PAR-2 mRNA by Northern blot and RT-PCR. PAR-2 protein was detected by immunofluorescence. Trypsin and the peptide agonist SLIGKV (AP2) were tested for their ability to induce calcium mobilization and to promote cell proliferation on serum-deprived cells. PAR-2 mRNA was detected by Northern blot analysis in 6 out of 10 cell lines Cl.19A, SW480,. Other cell lines expressed low levels of transcripts, which were detected only by RT-PCR. Further results were obtained with HT-29 cells: (1) PAR-2 protein is expressed at the cell surface; (2) an increase in intracellular calcium concentration was observed upon trypsin (1-100 nM) or AP2 (10-100 µM) challenges; (3) cells grown in serum-deprived media supplemented with trypsin (0.1-1 nM) or AP2 (1-300 µM) exhibited important mitogenic responses (3-fold increase of cell number). Proliferative effects of trypsin or AP2 were also observed in other cell lines expressing PAR-2. These data show that subnanomolar concentrations of trypsin, acting at PAR-2, promoted the proliferation of human colon cancer cells. The results of this study indicate that trypsin could be considered as a growth factor and unravel a new mechanism whereby serine proteases control colon tumours.
Several lines of evidence suggest that tumor-derived trypsin contributes to the growth and invasion of cancer cells. We have recently shown that trypsin is a potent growth factor for colon cancer cells through activation of the G protein-coupled receptor protease-activated receptor 2 (PAR2). Here, we analyzed the signaling pathways downstream of PAR2 activation that lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events upon activation of PAR2 by the serine protease trypsin or the specific PAR2-activating peptide (AP2): (i) a matrix metalloproteinasedependent release of transforming growth factor (TGF)-␣, as demonstrated with TGF-␣-blocking antibodies and measurement of TGF-␣ in culture medium; (ii) TGF-␣-mediated activation of epidermal growth factor receptor (EGF-R) and subsequent EGF-R phosphorylation; and (iii) activation of ERK1/2 and subsequent cell proliferation. The links between these events are demonstrated by the fact that stimulation of cell proliferation and ERK1/2 upon activation of PAR2 is reversed by the metalloproteinase inhibitor batimastat, TGF-␣-neutralizing antibodies, EGF-R ligand binding domain-blocking antibodies, and the EGF-R tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGF-R appears to be a major mechanism whereby activation of PAR2 results in colon cancer cell growth. By using the Src tyrosine kinase inhibitor PP2, we further showed that Src plays a permissive role for PAR2-mediated ERK1/2 activation and cell proliferation, probably acting downstream of the EGF-R. These data explain how trypsin exerts robust trophic action on colon cancer cells and underline the critical role of EGF-R transactivation.Proteases have been increasingly recognized as important factors in pathophysiology of tumor diseases. Besides their contribution to cancer progression by the degradation of extracellular matrix proteins, there is now substantial evidence that certain proteases serve as signal molecules controlling cell functions through specific membrane receptors, the proteaseactivated receptors. PARs 1 are seven transmembrane-spanning domain G protein-coupled receptors comprising four receptors named PAR1, PAR2, PAR3, and PAR4 (1, 2). Thrombin is the physiological activator of PAR1, PAR3, and PAR4, whereas PAR2 is activated by multiple trypsin-like enzymes including trypsin and mast cell tryptase but not thrombin. The mechanism of activation of PARs was initially established for PAR1 (3) and seems to be a paradigm for the other PARs (1, 2, 4). They are irreversibly activated by a proteolytic mechanism in which the protease binds to and cleaves the amino-terminal exodomain of the receptor. This cleavage generates a new amino-terminal sequence that binds intramolecularly to the core receptor and serves as a tethered ligand. Synthetic activating peptides that mimic the tethered ligand domains of PAR1, PAR2, and PAR4 have been developed. The activation of PARs by these synthetic peptides APs is independent of rec...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.