The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e. into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about external states (or their trajectories). These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states. This provides a formal language for modelling the constraints, forces, potentials and other quantities determining the dynamics of such systems, especially as they entail dynamics on a space of beliefs (i.e. on a statistical manifold). Here, we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e. path-tracking, mode-tracking and mode-matching). We go on to examine a duality between the free energy principle and the constrained maximum entropy principle, both of which lie at the heart of Bayesian mechanics, and discuss its implications.
The aim of this paper is to introduce a field of study that has emerged over the last decade, called Bayesian mechanics. Bayesian mechanics is a probabilistic mechanics, comprising tools that enable us to model systems endowed with a particular partition (i.e., into particles), where the internal states (or the trajectories of internal states) of a particular system encode the parameters of beliefs about quantities that characterise the system. These tools allow us to write down mechanical theories for systems that look as if they are estimating posterior probability distributions over the causes of their sensory states, providing a formal language to model the constraints, forces, fields, and potentials that determine how the internal states of such systems move in a space of beliefs (i.e., on a statistical manifold). Here we will review the state of the art in the literature on the free energy principle, distinguishing between three ways in which Bayesian mechanics has been applied to particular systems (i.e., path-tracking, mode-tracking, and mode-matching). We will go on to examine the duality of the free 1
In this paper, a simple case of Bayesian mechanics under the free energy principle is formulated in axiomatic terms. We argue that any dynamical system with constraints on its dynamics necessarily looks as though it is performing inference against these constraints, and that in a non-isolated system, such constraints imply external environmental variables embedding the system. Using aspects of classical dynamical systems theory in statistical mechanics, we show that this inference is equivalent to a gradient ascent on the Shannon entropy functional, recovering an approximate Bayesian inference under a locally ergodic probability measure on the state space. We also use some geometric notions from dynamical systems theory-namely, that the constraints constitute a gauge degree of freedom-to elaborate on how the desire to stay self-organised can be read as a gauge force acting on the system. In doing so, a number of results of independent interest are given. Overall, we provide a related, but alternative, formalism to those driven purely by descriptions of random dynamical systems, and take a further step towards a comprehensive statement of the physics of self-organisation in formal mathematical language.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.