Dendritic cells are critically involved in the promotion and regulation of T cell responses. Here, we report a mouse strain that lacks conventional CD11c(hi) dendritic cells (cDCs) because of constitutive cell-type specific expression of a suicide gene. As expected, cDC-less mice failed to mount effective T cell responses resulting in impaired viral clearance. In contrast, neither thymic negative selection nor T regulatory cell generation or T cell homeostasis were markedly affected. Unexpectedly, cDC-less mice developed a progressive myeloproliferative disorder characterized by prominent extramedullary hematopoiesis and increased serum amounts of the cytokine Flt3 ligand. Our data identify a critical role of cDCs in the control of steady-state hematopoiesis, revealing a feedback loop that links peripheral cDCs to myelogenesis through soluble growth factors, such as Flt3 ligand.
The means to specifically ablate cells inside of a living organism have recently been improved and facilitated by stable mouse lines, carrying conditional expression constructs for diphtheria toxin (DT) or diphtheria toxin receptor, that could be activated upon Cre-mediated recombination or the application of diphtheria toxin, respectively. We have lately described the R26:lacZ/DT-A line (Brockschnieder et al., 2004, Mol Cell Biol 24:7636-7642) in which a loxP-conditional DTA allele was introduced into the ubiquitously expressed Rosa26 locus. This strain allowed the ablation of a wide spectrum of cell types by crossing it to tissue specific Cre lines. Unexpectedly, homozygous (but not heterozygous) animals of the R26:lacZ/DT-A line developed some degenerative abnormalities in a variety of tissues. The defects were most probably caused by leaky expression of small amounts of toxin from the unrecombined lacZ(flox)DT-A cassette. Here we show that insertion of an additional transcriptional regulatory sequence (bovine growth hormone polyadenylation signal, bpA) following the lacZ open reading frame prevented the formation of any defects in homozygous mice. The modification did not affect the functionality of the lacZ(flox)DTA allele, as exemplified by the complete ablation of oligodendrocytes upon Cre-mediated recombination. The novel R26:lacZbpA(flox)DTA line is expected to greatly facilitate the reliable generation of cell type ablated mice.
Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, thereby allowing rapid propagation of action potentials. Despite the considerable clinical importance of myelination, little is known about the molecular mechanisms that enable oligodendrocytes to generate their specialized membrane wrapping. Here, we used microarray expression profiling of oligodendrocyte-ablated mutant mice to identify new glial molecules that are involved in CNS myelination. This effort resulted in the identification of Ermin, a novel cytoskeletal molecule that is exclusively expressed by oligodendrocytes. Ermin appears at a late stage during myelination, and in the mature nerves, it is localized to the outer cytoplasmic lip of the myelin sheath and the paranodal loops. In cultured oligodendrocytes, Ermin becomes visible in well differentiated MBP-positive cells, where it is concentrated at the tip of F-actinrich processes (termed "Ermin spikes"). Ectopic expression of Ermin, but not of a mutant protein lacking its actin-binding domain, induced the formation of numerous cell protrusions and a pronounced change in cell morphology. Our results demonstrate that Ermin is a novel marker of myelinating oligodendroglia and suggest that it plays a role in cytoskeletal rearrangements during the late wrapping and/or compaction phases of myelinogenesis.
SUMMARY Oligodendrocytes form an insulating multilamellar structure of compact myelin around axons, which allows efficient and rapid propagation of action potentials. However, little is known about the molecular mechanisms operating at the onset of myelination and during maintenance of the myelin sheath in the adult. Here we use a genetic cell ablation approach combined with Affymetrix GeneChip microarrays to identify a number of oligodendrocyte-enriched genes that may play a key role in myelination. One of the “oligogenes” we cloned using this approach is Tmem10/Opalin, which encodes for a novel transmembrane glycoprotein. In situ hybridization and RT-PCR analysis revealed that Tmem10 is selectively expressed by oligodendrocytes and that its expression is induced during their differentiation. Developmental immunofluorescence analysis demonstrated that Tmem10 starts to be expressed in the white matter tracks of the cerebellum and the corpus callosum at the onset of myelination after the appearance of other myelin genes such as MBP. In contrast to the spinal cord and brain, Tmem10 was not detected in myelinating Schwann cells, indicating that it is a CNS-specific myelin protein. In mature oligodendrocytes, Tmem10 was present at the cell soma and processes, as well as along myelinated internodes, where it was occasionally concentrated at the paranodes. In myelinating spinal cord cultures, Tmem10 was detected in MBP-positive cellular processes that were aligned with underlying axons before myelination commenced. These results suggest a possible role of Tmem10 in oligodendrocyte differentiation and CNS myelination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.