Abstract. Present-day Small Hydropower Plants (SHPs) have a large development potential because of the increasing interest in renewable resources and distributed energy generation. However, the variable hydrological conditions that are found in the run-of-the-river projects require operations over a wide range of water flow and head variations. Special control methods and system topologies are needed to maintain the high efficiency of energy conversion systems. The synchronous generator excited by permanent magnets (PMSG) characterizes higher and more stable efficiency characteristic, in relation to the generated power, then mostly used in SHPs asynchronous machine. This paper investigates the efficiency of an example SHP solution. The researched system is based on an innovative generation unit (hydro-set) containing a propeller turbine integrated with the PMSG. In order to obtain the high efficiency in a wide range of water flow the variable speed operation method has been used. This solution requires a Power Electronic Unit in the energy conversion system to match the load and control the power flow from the generator to the grid. Efficiency analysis concerns all elements of the energy conversion system. Presented results comes from the real SHP of 150kW nominal power.
Obtaining energy from renewable resources is a worldwide trend in the age of increasing energy demand. Hydropower has some potential in this field, especially for low-power locations. However, construction of such facilities requires high expenses, which is why some attempts at lowering the costs have been made, i.e., by proposing alternative solutions to the classic ones. This paper proposes a selection of options for small hydropower plants (SHP) that lower the investment costs while keeping up profitable operations. The proposed solutions concern simplifying the turbine’s and generator’s integration by installing them in dedicated prefabricated concrete modules. A rare but simple and cheap semi-Kaplan type of turbine with a non-classical spiral inflow is proposed. The turbine operates a permanent magnet (PM)-excited generator, converting the energy at a variable rotational speed. Thanks to this approach, it is possible to simplify the regulation system and eliminate expensive mechanical transmission. However, on the power grid side, a power electronic converter (PEC) must be coupled with the generator. The advantage of this solution compared to the classical ones is that the reliability of power electronics is much higher than that of mechanical systems. This paper presents modeling research on semi-Kaplan turbines’ series development, and a dedicated PM generator is presented as an example of a complete hydro unit with 50 kW power.
The paper provide a comprehensive review on water turbine integrated with electrical generator. The integration consists in combining the generator with the turbine in one device without the use of a gearbox. The practical implementations of these solutions date back to the 1980s and are more and more common. Such a solution gives a wide possibility of integration and reduction of costs of the hydro unit, however, due to certain technological problems, it is not widely available. This article classifies the different types of integration and analyses it from a technical and economic point of view. Practical implementations and operational problems were also shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.