Electrochemical noise measurements were performed to investigate the intrinsically stochastic character of the tribocorrosion process. Unidirectional sliding tests (pin-on-disc) were performed using AISI 304L stainless steel sliding against corundum. Experiments were carried out in Cl− and
containing media under open-circuit and potentiostatic polarization conditions. The power spectral density (PSD) of the current and potential signals showed a strong dependence on the sliding frequency but did not depend significantly on the normal load between 5 and 20 N. The fluctuations of the tangential and normal loads were also recorded, and a critical comparison between the PSD of the electrochemical response and the PSD of the mechanical solicitation (load) is proposed. At high frequencies (f > 0.1 Hz), the PSD of current or potential fluctuations have significantly different shapes than the PSD of load signals: the electrochemical signal PSD is governed by the dynamic balance between local depassivation and repassivation which only depends on the kinetics of the electrochemical phenomena. For lower frequencies, a plateau is observed for both the electrochemical PSD and the load PSD. The electrochemical signal is then governed by the continuous depassivation induced by sliding which appears as a low frequency component. These results suggest that the electrochemical noise technique investigated in the frequency domain might be a promising electrochemical tool for successfully unfolding tribocorrosion signatures for material parings in sliding-corrosion tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.