In order to obtain the residual stress field resulting from the welding process, numerical simulations of multi-pass welding have demonstrated their efficiency and have become an interesting alternative to practical measurements. However, in the context of engineering studies, it remains a difficult task to compute residual stresses for a very high number of passes with reasonable computation times. In this paper, a time-saving method is proposed to simulate the welding process, ensuring an accurate reproduction of the residual stress field with drastically reduced computation times. The method consists in including in the simulation only the last deposited pass, or a reduced number of appropriately selected passes. For a given material and a given heat input, the choice of remaining passes depends on the geometrical parameters. The method is applied to various geometries of austenitic pipes girth welds, which have been widely studied in the literature and standards. The results, confronted to multipass simulations including all the passes, and to literature results, are very satisfactory. Quasi-identical residual stress fields are computed in both cases with computation times divided by a factor comprised between 7 up to 12. Further computations are in progress on other configurations than girth-weld pipes, and more complex 3D geometry like J weld of bottom head nozzles.
Il existe de nombreux essais de soudage : essais de qualification des soudeurs et de mode opératoire, essais de caractérisation des soudures, essais d'évaluation de la performance des assemblages. Depuis la montée en puissance de la simulation numérique, se sont imposés les essais de mise au point des modèles et de leur validation. La maturité aujourd'hui acquise de la modélisation des effets du soudage sur la pièce permet le recoursà la simulation numérique pour concevoir des essais de soudabilité et pour comprendre le rôle des contraintes résiduelles dans les essais d'intégrité des structures soudées. Par ailleurs, la simulation des procédés commenceà servirà leur amélioration. On peut citerà titre d'exemples : la maitrise de la pénétration latérale, la définition de la forme des buses de gaz de protection ou la compréhension des phénomènes d'instabilité du plasma. C'est dans le domaine de la simulation des essais de fissuration que les modèles font le plus souvent défaut, trop frustres encore pour permettre la simulation des phénomènes.De façon classique, se pose la double question : quels essais pour la simulation et quelles simulations pour les essais ? Mais il est aussi souhaitable de faireémerger les approches où le couplage essais-simulation peut faire progresser l'interaction deséquipes chargées d'essais et de calcul dans la recherche de solutions industrielles pour la maitrise des procédés de soudage et la performance des assemblages soudés.L'approche traditionnelle consiste souventà faire une dichotomie entre les essais et la simulation, il n'est pas rare d'ailleurs que les deux mondes aient du malà communiquer. On considère ainsi souvent les essais comme source pour alimenter des modèles de simulation par exemple pour la caractérisation des propriétés des matériaux, la validation des modèles par corrélation essais -calcul, ou bien la simulation comme outil d'aideà l'interprétation des essais pour l'identification et la compréhension de phénomènes qui dépassent l'homme de l'art. Pour faire une analogie numérique on parlerait de couplage faible essais-simulation.Les papiers présentés sontà dominante industrielle et montrent que des efforts sont fait pour dépasser ce point de vue avec une bonne synergie entre le monde académique et industriel. Notamment avec :
Prediction of residual stresses in welds is essential in order to evaluate the integrity of a component subject to degradation mechanisms such as Stress Corrosion Cracking. During welding operations, complex thermo-mechanical and metallurgical processes take place and lead to microstructural changes such as dynamic recovery and dynamic recrystallization. These microstructural changes induce a modification of hardening behavior that should be taken into account to accurately evaluate residual stresses through numerical simulations. A large test campaign was carried out in order to measure the recovery and recrystallization kinetics of Ni base alloy 600. Tests consisted in introducing 20% of plastic-strain at room temperature and then applying a thermal cycle with a Gleeble heat treatment simulator under stress release conditions. The comparison of mechanical properties prior to heat treatment and after heat treatment allows the evaluation of the recovery parameter that could be considered during welding numerical simulations. During this test campaign, various thermal cycles were applied. Experimental results show that the whole data points can be described as a function of Larson-Miller parameter. Mechanical results, metallurgical investigations and first numerical simulations are also presented in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.