Most of today's electronic devices, like solar cells and batteries, are based on nanometer-scale built-in electric fields. Accordingly, characterization of fields at such small scales has become an important task in the optimization of these devices. In this study, with GaAs-based p−n junctions as the example, key characteristics such as doping concentrations, polarity, and the depletion width are derived quantitatively using four-dimensional scanning transmission electron microscopy (4DSTEM). The built-in electric fields are determined by the shift they introduce to the center-of-mass of electron diffraction patterns at subnanometer spatial resolution. The method is applied successfully to characterize two p−n junctions with different doping concentrations. This highlights the potential of this method to directly visualize intentional or unintentional nanoscale electric fields in real-life devices, e.g., batteries, transistors, and solar cells.
Scanning transmission electron microscopy (STEM) allows to gain quantitative information on the atomic-scale structure and composition of materials, satisfying one of todays major needs in the development of novel nanoscale devices. The aim of this study is to quantify the impact of inelastic, i.e. plasmon excitations (PE), on the angular dependence of STEM intensities and answer the question whether these excitations are responsible for a drastic mismatch between experiments and contemporary image simulations observed at scattering angles below $$\sim $$ ∼ 40 mrad. For the two materials silicon and platinum, the angular dependencies of elastic and inelastic scattering are investigated. We utilize energy filtering in two complementary microscopes, which are representative for the systems used for quantitative STEM, to form position-averaged diffraction patterns as well as atomically resolved 4D STEM data sets for different energy ranges. The resulting five-dimensional data are used to elucidate the distinct features in real and momentum space for different energy losses. We find different angular distributions for the elastic and inelastic scattering, resulting in an increased low-angle intensity ($$\sim $$ ∼ 10–40 mrad). The ratio of inelastic/elastic scattering increases with rising sample thickness, while the general shape of the angular dependency is maintained. Moreover, the ratio increases with the distance to an atomic column in the low-angle regime. Since PE are usually neglected in image simulations, consequently the experimental intensity is underestimated at these angles, which especially affects bright field or low-angle annular dark field imaging. The high-angle regime, however, is unaffected. In addition, we find negligible impact of inelastic scattering on first-moment imaging in momentum-resolved STEM, which is important for STEM techniques to measure internal electric fields in functional nanostructures. To resolve the discrepancies between experiment and simulation, we present an adopted simulation scheme including PE. This study highlights the necessity to take into account PE to achieve quantitative agreement between simulation and experiment. Besides solving the fundamental question of missing physics in established simulations, this finally allows for the quantitative evaluation of low-angle scattering, which contains valuable information about the material investigated.
This is an Accepted Manuscript for the Microscopy and Microanalysis 2020 Proceedings. This version may be subject to change during the production process.
Recently, four dimensional scanning transmission electron microscopy (4D STEM) emerged as a promising technique for sample characterization due to the multitude of different signals which can be created from the data sets after acquisition (Ophus, 2019). Synthetic images like annular dark field (ADF), annular bright field (ABF) or center of mass (COM) yield useful information about a sample´s structure, composition or even fields present within the sample. Especially ABF and COM are generated by electrons which are scattered at rather small angles as compared to HAADF (high angle annular dark field) STEM. This has implications if it comes to complementary image simulation. In the case of HAADF STEM, multi-slice simulations are well established and quantitative agreement with the experiment can be achieved, see e.g. (Beyer et al., 2016). This allows to quantify the local composition and structure of experimental images. However, at low scattering angles involved in 4D STEM there are significant deviations between simulation and experiment (Müller-Caspary et al., 2016).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.