In this study we have evaluated the use of consumption of manufactured products (chemical products and articles) in the EU as proxies for diffuse emissions of chemicals to the environment. The content of chemical products is relatively well known. However, the content of articles (products defined by their shape rather than their composition) is less known and currently has to be estimated from chemicals that are known to occur in a small set of materials, such as plastics, that are part of the articles. Using trade and production data from Eurostat in combination with product composition data from a database on chemical content in materials (the Commodity Guide), we were able to calculate trends in the apparent consumption and in-use stocks for 768 chemicals in the EU for the period 2003-2016. The results showed that changes in the apparent consumption of these chemicals over time are smaller than in the consumption of corresponding products in which the chemicals are present. In general, our results suggest that little change in chemical consumption has occurred over the timespan studied, partly due to the financial crisis in 2008 which led to a sudden drop in the consumption, and partly due to the fact that each of the chemicals studied is present in a wide variety of products. Estimated in-use stocks of chemicals show an increasing trend over time, indicating that the mass of chemicals in articles in the EU, that could potentially be released to the environment, is increasing. The quantitative results from this study are associated with large uncertainties due to limitations of the available data. These limitations are highlighted in this study and further underline the current lack of transparency on chemicals in articles. Recommendations on how to address these limitations are also discussed.
Abstract. Semi-volatile persistent organic pollutants (POPs) cycle between the atmosphere and terrestrial surfaces; however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR) method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O) to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulate the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method, field studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met, then the performance of the MBR method is neither strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.
The capacity of leaves to take up chemicals from the atmosphere and water influences how contaminants are transferred into food webs and soil. We provide a proof of concept of a passive dosing method to measure leaf/polydimethylsiloxane partition ratios (K) for intact leaves, using polychlorinated biphenyls (PCBs) as model chemicals. Rhododendron leaves held in contact with PCB-loaded PDMS reached between 76 and 99% of equilibrium within 4 days for PCBs 3, 4, 28, 52, 101, 118, 138 and 180. Equilibrium K extrapolated from the uptake kinetics measured over 4 days ranged from 0.075 (PCB 180) to 0.371 (PCB 3). The K data can readily be converted to fugacity capacities of leaves (Z) and subsequently leaf/water or leaf/air partition ratios (K and K) using partitioning data from the literature. Results of our measurements are within the variability observed for plant/air partition ratios (K) found in the literature. Log K from this study ranged from 5.00 (PCB 3) to 8.30 (PCB 180) compared to log K of 3.31 (PCB 3) to 8.88 (PCB 180) found in the literature. The method we describe could provide data to characterize the variability in sorptive capacities of leaves that would improve descriptions of uptake of chemicals by leaves in multimedia fate models.
Abstract. Semi-volatile persistent organic pollutants (POPs) cycle between the atmosphere and terrestrial surfaces, however measuring fluxes of POPs between the atmosphere and other media is challenging. Sampling times of hours to days are required to accurately measure trace concentrations of POPs in the atmosphere, which rules out the use of eddy covariance techniques that are used to measure gas fluxes of major air pollutants. An alternative, the modified Bowen ratio (MBR) method, has been used instead. In this study we used data from FLUXNET for CO2 and water vapor (H2O) to compare fluxes measured by eddy covariance to fluxes measured with the MBR method using vertical concentration gradients in air derived from averaged data that simulates the long sampling times typically required to measure POPs. When concentration gradients are strong and fluxes are unidirectional, the MBR method and the eddy covariance method agree within a factor of 3 for CO2, and within a factor of 10 for H2O. To remain within the range of applicability of the MBR method field, studies should be carried out under conditions such that the direction of net flux does not change during the sampling period. If that condition is met then the performance of the MBR method is not strongly affected by the length of sample duration nor the use of a fixed value for the transfer coefficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.