An implantable transducer for monitoring the flow of Cerebrospinal fluid (CSF) for the treatment of hydrocephalus has been developed which is based on measuring the heat dissipation of a local thermal source. The transducer uses passive telemetry at 13.56 MHz for power supply and read out of the measured flow rate. The in vitro performance of the transducer has been characterized using artificial Cerebrospinal Fluid (CSF) with increased protein concentration and artificial CSF with 10% fresh blood. After fresh blood was added to the artificial CSF a reduction of flow rate has been observed in case that the sensitive surface of the flow sensor is close to the sedimented erythrocytes. An increase of flow rate has been observed in case that the sensitive surface is in contact with the remaining plasma/artificial CSF mix above the sediment which can be explained by an asymmetric flow profile caused by the sedimentation of erythrocytes having increased viscosity compared to artificial CSF. After removal of blood from artificial CSF, no drift could be observed in the transducer measurement which could be associated to a deposition of proteins at the sensitive surface walls of the packaged flow transducer. The flow sensor specification requirement of +-10% for a flow range between 2 ml/h and 40 ml/h. could be confirmed at test conditions of 37 degrees C.
a b s t r a c tReliable in vitro models are required to understand the ability of cells to respond and adapt to mechanical stimuli. To mimic and interface with the microenvironment, lab-on-a-chip devices and microelectromechanical systems (MEMS) provide excellent options. However, little effort has been done in combining them. To address this shortcoming, we have developed a versatile microengineered platform which consists of two parts: an electrostatically actuated MEMS device used for mechanobiology assays, and a fluidic system for cell culture. A capillary valve allows inserting a silicon chip horizontally in the culture medium without leakage and without wetting of the electrostatic microactuators. The platform is designed for mechanotransduction assay on cells and aims specifically human mesenchymal stem cells. The proof of principle of the platform was performed by stable and long-term cultures of rat fibroblasts. We could also study the effect of periodic stress at various excitation frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.