Droplet microfluidic technology is applied for the high-throughput synthesis via Michael-type addition of reactive, micrometer-sized poly(ethylene glycol) (PEG) hydrogels ("microgels") with precisely controlled dimension and physicochemical properties. A versatile chemical scheme is used to modify the reactive PEG microgels with tethered biomolecules to tune their bioactive properties for the bioreactor culture and manipulation of various (stem) cell types.
The potential of human fetal bone cells for successful bone regeneration has been shown in vivo. In particular, it has been demonstrated that the seeding of these cells in porous poly-(L-lactic acid)/b-tricalcium phosphate scaffolds improved the bone formation compared to cell-free scaffolds in skulls of rats. However, even if the outcome is an improvement of bone formation, a thorough analysis concerning any immune responses, due to the implantation of a xenograft tissue, is not known. As the immune response and skeletal system relationship may contribute to either the success or failure of an implant, we were interested in evaluating the presence of any immune cells and specific reactions of human fetal cells (also called human bone progenitor cells) once implanted in femoral condyles of rats. For this purpose, (1) cell-free scaffolds, (2) human bone progenitor cells, or (3) osteogenic human bone progenitor cells within scaffolds were implanted over 3, 7, 14 days, and 12 weeks. The key finding is that human bone progenitor cells and osteogenic human bone progenitor cells do not trigger any particular specific immune reactions in immunocompetent rats but are noted to delay some bone formation.
Several approaches to combine bone substitutes with biomolecules, cells or mechanical loading have been explored as an alternative to the limitation and risk-related bone auto- and allo-grafts. In particular, human bone progenitor cells seeded in porous poly(L-lactic acid)/tricalcium phosphate scaffolds have shown promising results. Furthermore, the application of mechanical loading has long been known to be a key player in the regulation of bone architecture and mechanical properties. Several in vivo studies have pointed out the importance of its temporal offset. When an early mechanical loading was applied a few days after scaffold implantation, it was ineffective on bone formation, whereas a delayed mechanical loading of several weeks was beneficial for bone tissue regeneration. No information is reported to date on the effectiveness of applying a mechanical loading in vivo on cell-seeded scaffold with respect to bone formation in a bone site. In our study, we were interested in human bone progenitor cells due to their low immunogenicity, sensitivity to mechanical loading and capacity to differentiate into osteogenic human bone progenitor cells. The latest capacity allowed us to test two different bone cell fates originating from the same cell type. Therefore, the general aim of this study was to assess the outcome on bone formation when human bone progenitor cells or pre-differentiated osteogenic human bone progenitor cells are combined with early and delayed mechanical loading inside bone tissue engineering scaffolds. Scaffolds without cells, named cell-free scaffold, were used as control. Surprisingly, we found that (1) the optimal solution for bone formation is the combination of cell-free scaffolds and delayed mechanical loading and that (2) the timing of the mechanical application is crucial and dependent on the cell type inside the implanted scaffolds.
a b s t r a c tReliable in vitro models are required to understand the ability of cells to respond and adapt to mechanical stimuli. To mimic and interface with the microenvironment, lab-on-a-chip devices and microelectromechanical systems (MEMS) provide excellent options. However, little effort has been done in combining them. To address this shortcoming, we have developed a versatile microengineered platform which consists of two parts: an electrostatically actuated MEMS device used for mechanobiology assays, and a fluidic system for cell culture. A capillary valve allows inserting a silicon chip horizontally in the culture medium without leakage and without wetting of the electrostatic microactuators. The platform is designed for mechanotransduction assay on cells and aims specifically human mesenchymal stem cells. The proof of principle of the platform was performed by stable and long-term cultures of rat fibroblasts. We could also study the effect of periodic stress at various excitation frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.