<p class="MsoNormal" style="text-align: left; margin: 0cm 0cm 0pt; layout-grid-mode: char;" align="left"><span class="text"><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;">This paper presents an InfoStation-based multi-agent system, which provides mobile services</span></span><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;"> <span class="text">(mServices) across a University Campus. A description of some of the mServices along with sample interactions among entities is provided. Technologies for delivering of these services are discussed and approaches for the system implementation and structuring are considered.</span></span></p>
BackgroundThere is a considerable shortfall in specialized health care professionals worldwide to deliver health services, and this shortfall is especially pronounced in low-middle-income countries. This has led to the implementation of task-shifted interventions, in which specific tasks are moved away from highly qualified health workers to health workers with less training. The World Health Organization (WHO) has published recommendations for such interventions, but guidelines for software and systems supporting such interventions are not included.ObjectiveThe objective of this study was to formulate a number of software requirements for computer systems supporting task-shifted interventions. As the treatment of mental health problems is generally considered to be a task for highly trained health care professionals, it poses interesting case studies for task-shifted interventions. Therefore, we illustrated the use of the identified software requirements in a mobile system created for a task-shifted depression intervention to be provided to older adults in deprived areas of São Paulo, Brazil.MethodsUsing a set of recommendations based on the WHO’s guidance documentation for task-shifted interventions, we identified 9 software requirements that aim to support health workers in management and supervision, training, good relationship with other health workers, and community embeddedness of the intervention. These 9 software requirements were used to implement a system for the provision of a psychosocial depression intervention with mobile Android interfaces to structure interventions and collect data, and Web interfaces for supervision and support of the health care workers delivering the intervention. The system was tested in a 2-arm pilot study with 33 patients and 11 health workers. In all, 8 of these 11 health workers participated in a usability study subsequent to the pilot.ResultsThe qualitative and quantitative feedback obtained with the System Usability Scale suggest that the system was deemed to have a usability of between OK and Good. Nevertheless, some participants’ responses indicated that they felt they needed technical assistance to use the system. This was reinforced by answers obtained with perceived usefulness and ease of use questionnaires, which indicated some users felt that they had issues around correct use of the system and perceived ability to become skillful at using the system.ConclusionsOverall, these high-level requirements adequately captured the functionality required to enable the health workers to provide the intervention successfully. Nevertheless, the analysis of results indicated that some improvements were required for the system to be useable in a task-shifted intervention. The most important of these were better access to a training environment, access for supervisors to metadata such as duration of sessions or exercises to identify issues, and a more robust and human-error–proof approach to the availability of patient data on the mobile devices used during the intervention.
The system presented in this paper demonstrates how a novel fibre optic based sensing platform, capable of detecting minute changes in the level of impurity in a liquid, can be incorporated onto a Mote based platform enabling real time monitoring of a body of water. How these features can be used to detect a representative sample of chlorophyll within a aquatic environment, will be demonstrated. Systems currently deployed worldwide include satellite mapping technology and high cost water monitoring platforms. Growing international emphasis on the management of water quality is giving rise to an expansion of the international market for novel robust, miniaturized, intelligent water monitoring systems capable of measuring local environmentally detrimental events such as localised small scale chemical pollution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.