Sodium-hydrogen exchanger isoform 1 (NHE1) plays a role in survival and migration/invasion of several cancers and is an emerging new therapeutic target. However, the role of NHE1 in glioblastoma and the interaction of NHE1 expression and function in glioblastoma cells with cytotoxic temozolomide (TMZ) therapy remain unknown. In this study, we detected high levels of NHE1 protein only in primary human glioma cells (GC), glioma xenografts and glioblastoma, but not in human neural stem cells or astrocytes. GC exhibited an alkaline resting pH i (7.46 ± 0.04) maintained by robust NHE1-mediated H + extrusion. GC treatment with TMZ for 2-24 h triggered a transient decrease in pH i , which recovered by 48 h and correlated with concurrent upregulation of NHE1 protein expression. NHE1 protein was colocalized with ezrin at lamellipodia and probably involved in GC migration. The TMZ-treated GC exhibited increased migration and invasion, which was attenuated by addition of NHE1 inhibitor HOE-642. Most importantly, NHE1 inhibition prevented prosurvival extracellular signal-regulated kinase activation and accelerated TMZ-induced apoptosis. Taken together, our study provides the first evidence that GC upregulate NHE1 protein to maintain alkaline pH i . Combining TMZ therapy with NHE1 inhibition suppresses GC migration and invasion, and also augments TMZ-induced apoptosis. These findings strongly suggest that NHE1 is an important cytoprotective mechanism in GC and presents a new therapeutic strategy of combining NHE1 inhibition and TMZ chemotherapy.
Ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions. They have recently emerged as important players in cancer progression. In this review, we discussed two important ion transporter proteins, sodium-potassium-chloride cotransporter isoform 1 (NKCC-1) and sodium-hydrogen exchanger isoform 1 (NHE-1) in Glioblastoma multiforme (GBM) and other malignant tumors. NKCC-1 is a Na+-dependent Cl− transporter that mediates the movement of Na+, K+, and Cl− ions across the plasma membrane and maintains cell volume and intracellular K+ and Cl− homeostasis. NHE-1 is a ubiquitously expressed cell membrane protein which regulates intracellular pH (pHi) and extracellular microdomain pH (pHe) homeostasis and cell volume. Here, we summarized recent pre-clinical experimental studies on NKCC-1 and NHE-1 in GBM and other malignant tumors, such as breast cancer, hepatocellular carcinoma, and lung cancer. These studies illustrated that pharmacological inhibition or down-regulation of these ion transporter proteins reduces proliferation, increases apoptosis, and suppresses migration and invasion of cancer cells. These new findings reveal the potentials of these ion transporters as new targets for cancer diagnosis and/or treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.