Mining association rules may generate a large numbers of rules making the results hard to analyze manually. Pasquier et al. have discussed the generation of GuiguesDuquenne-Luxenburger basis (GD-L basis). Using a similar approach, we introduce a new rule of inference and define the notion of association rules cover as a minimal set of rules that are non-redundant with respect to this new rule of inference. Our experimental results (obtained using both synthetic and real data sets) show that our covers are smaller than the GD-L basis and they are computed in time that is comparable to the classic Apriori algorithm for generating rules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.