Most classification approaches aim at achieving high prediction accuracy on a given dataset. However, in most practical cases, some action such as mailing an offer or treating a patient is to be taken on the classified objects, and we should model not the class probabilities themselves, but instead, the change in class probabilities caused by the action. The action should then be performed on those objects for which it will be most profitable. This problem is known as uplift modeling, differential response analysis, or true lift modeling, but has received very little attention in machine learning literature. An important modification of the problem involves several possible actions, when for each object, the model must also decide which action should be used in order to maximize profit. In this paper, we present treebased classifiers designed for uplift modeling in both single and multiple treatment cases. To this end, we design new splitting criteria and pruning methods. The experiments confirm the usefulness of the proposed approaches and show significant improvement over previous uplift modeling techniques.
Abstract. In this paper we show an efficient method for inducing classifiers that directly optimize the area under the ROC curve. Recently, AUC gained importance in the classification community as a mean to compare the performance of classifiers. Because most classification methods do not optimize this measure directly, several classification learning methods are emerging that directly optimize the AUC. These methods, however, require many costly computations of the AUC, and hence, do not scale well to large datasets. In this paper, we develop a method to increase the efficiency of computing AUC based on a polynomial approximation of the AUC. As a proof of concept, the approximation is plugged into the construction of a scalable linear classifier that directly optimizes AUC using a gradient descent method. Experiments on real-life datasets show a high accuracy and efficiency of the polynomial approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.