SUMMARYIn this paper, we analyse the effects of vibrations and the atmosphere on the performance of a broadband laser inter-satellite link (BLISL) which was studied within the framework of the BLISL joint IsraeliGerman applied research project. The use of optical radiation as a carrier between satellites and in satelliteto-ground links enables transmission using very narrow beam divergence angles. Due to the narrow beam divergence angle and the large distance between the satellite and the ground station or airplane the pointing is a complicated process. Further complication results from vibration of the pointing system caused by two fundamental mechanisms of a stochastic nature: (1) tracking noise created by the electro-optic tracker and (2) vibrations caused by internal satellite mechanical mechanisms. Additionally an inhomogeneity in the temperature and pressure of the atmosphere leads to variations of the refractive index along the transmission path. These variations of refractive index as well as pointing vibrations can cause fluctuations in the intensity and the phase of the received signal leading to an increase in link error probability. In this paper, we develop a bit error probability (BEP) model that takes into account both pointing vibrations and turbulence-induced log amplitude fluctuations (i.e. signal intensity fading) in a regime in which the receiver aperture D 0 is smaller than the turbulence coherence diameter d 0 : Our results indicate that BLISL can achieve a BEP of 10 À9 and data rate of 1Gbps with normalized pointing vibration of G T * s 2 y ¼ 0:05 and turbulence of s X ¼ 0:3:
We here propose an alternative cell therapy approach to induce angiogenesis. We prepared small organ fragments whose geometry allows preservation of the natural epithelial/mesenchymal interactions and ensures appropriate diffusion of nutrients and gases to all cells. Fragments derived from lung are shown to behave as fairly independent units, to undergo a marked upregulation of angiogenic factors and to continue to function for several weeks in vitro in serum-free media. When implanted into hosts, they transcribe a similar array of angiogenic factors that specifically induce the formation of a potent vascular network. The angiogenic induction capacity of these fragments was also tested in a mouse and rat model of limb ischemia. We report that such fragments, when implanted in the vicinity of the ischaemic area, induce an angiogenic response which can rescue the ischaemia-induced damage. The approach presented differs from single factor application, gene therapy and other cell therapy methods in that it exploits the complex behaviour of autologous cells in their near to normal environment in order to achieve secretion of a whole range of angiogenic stimuli continuously and in an apparently coordinated fashion.
When carrying out medical imaging based on detection of isotopic radiation levels of internal organs such a lungs or heart, distortions, and blur arise as a result of the organ motion during breathing and blood supply. Consequently, image quality declines, despite the use of expensive high resolution devices and, such devices are not exploited fully. A method with which to overcome the problem is image restoration. Previously, we suggested and developed a method for calculating numerically the optical transfer function (OTF) for any type of image motion. The purpose of this research is restoration of original isotope images (of the lungs) by restoration methods that depend on the OTF of the real time relative motion between the object and the imaging system. This research uses different algorithms for the restoration of an image, according to the OTF of the lung motion, which is in several directions simultaneously. One way of handling the three-dimensional movement is to decompose the image into several portions, to restore each portion according to its motion characteristics, and then to combine all the image portions back into a single image. An additional complication is that the image was recorded at different angles. The application of this research is in medical systems requiring high resolution imaging. The main advantage of this approach is its low cost versus conventional approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.