There is relatively extensive knowledge available concerning ash transformation reactions during combustion of woody biomass. In recent decades, the use of these energy carriers has increased, from a low-technology residential small-scale level to an industrial scale. Along this evolution, ash chemical-related phenomena for woody biomass have been observed and studied. Therefore, presently the understanding for these are, if not complete, fairly good. However, because the demand for CO 2 -neutral energy resources has increased recently and will continue to increase in the foreseeable future, other biomasses, such as, for instance, agricultural crops, have become highly interesting. The ash-forming matter in agricultural biomass is rather different in comparison to woody biomass, with a higher content of phosphorus as a distinctive feature. The knowledge about the ash transformation behavior in these systems is far from complete. Here, an attempt to give a schematic but general description of the ash transformation reactions of biomass fuels is presented in terms of a conceptual model, with the intention to provide guidance in the understanding of ash matter behavior in the use of any biomass fuel, primarily from the knowledge of the concentrations of ash-forming elements. The model was organized in primary and secondary reactions. Restrictions on the theoretical model in terms of reactivity limitations and physical conditions of the conversion process were discussed and exemplified, and some principal differences between biomass ashes dominated by Si and P, separately, were outlined and discussed.
The IND-SAC cocrystal was formed with a unique and interesting carboxylic acid and imide dimer synthons interconnected by weak N-Hcdots, three dots, centeredO hydrogen bonds. The cocrystals were non-hygroscopic and were associated with a significantly faster dissolution rate than indomethacin (gamma-form).
A residential cereal burner (20 kW) was used to study the slagging characteristics of cereal grains with and without lime addition. The deposited bottom ash and slag were analyzed using X-ray diffraction (XRD), to identify the crystalline phases, and environmental scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy (ESEM/EDS), to study the morphology and elemental composition. Phase-diagram information was utilized to extract qualitative information about the behavior of cereal grain ashes under combustion conditions. Chemical equilibrium model calculations were used to interpret the experimental results. In addition, investigations of the melting behavior of the produced slags were conducted. The results showed significant differences in slagging characteristics between the fuels that were used. The slags consisted of high-temperature melting crystalline phases (calcium/magnesium potassium phosphates) and a potassium-rich phosphate melt for all cereal grains. For oat and barley, cristobalite was also identified in the slag. Furthermore, in these cases, the slags most probably contained a potassium-rich silica melt. The differences in the melting behaviors of the slags had a considerable effect on the performance of the burner. The addition of lime reduced the formation of slag for barley and totally eliminated it for rye and wheat. This occurs because lime contributes to the formation of high-temperature melting calcium potassium phosphates.
The bed agglomeration characteristics during combustion of phosphorus-rich biomass fuels and fuel mixtures were determined in a fluidized (quartz) bed reactor (5 kW). The fuels studied (separately and in mixtures) included logging residues, bark, willow, wheat straw, and phosphorus-rich fuels, like rapeseed meal (RM) and wheat distillers dried grain with solubles (DDGS). Phosphoric acid was used as a fuel additive. Bed material samples and agglomerates were studied by means of scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDX), in order to analyze the morphological and compositional changes of coating/reaction layers and necks between agglomerated bed particles. Furthermore, bed ash particles were separated by sieving from the bed material samples and analyzed with SEM/EDS and powder X-ray diffraction (XRD). For logging residues, bark, and willow, with fuel ash rich in Ca and K but with low contents of P and organically bound Si, the bed layer formation is initiated by reactions of gaseous or liquid K compounds with the surface of the bed material grains, resulting in the formation of a potassium silicate melt. The last process is accompanied by the diffusion/dissolving of Ca into the melt and consequent viscous flow sintering and agglomeration. The addition of high enough phosphorus content to convert the available fuel ash basic oxides into phosphates reduced the amount of K available for the reaction with the quartz bed material grains, thus preventing the formation of an inner bed particle layer in the combustion of logging residues, bark, and willow. Some of the phosphate-rich ash particles, formed during the fuel conversion, adhered and reacted with the bed material grains to form noncontinuous phosphate-silicate coating layers, which were found responsible for the agglomeration process. Adding phosphorus-rich fuels/additives to fuels rich in K and Si (e.g., wheat straw) leads to the formation of alkali-rich phosphatesilicate ash particles that also adhered to the bed particles and caused agglomeration. The melting behavior of the bed particle layers/ coatings formed during combustion of phosphorus-rich fuels and fuel mixtures is an important controlling factor behind the agglomeration tendency of the fuel and is heavily dependent on the content of alkaline earth metals in the fuel. A general observation is that phosphorus is the controlling element in ash transformation reactions during biomass combustion in fluidized quartz beds because of the high stability of phosphate compounds.
Limited availability of sawdust and planer shavings and an increasing demand for biomass pellets in Europe are pushing the market toward other, more problematic raw materials with broader variation in total fuel ash content and composition of the ash forming elements as well as in their slagging tendencies. The main objective in the present work was therefore to determine the influence of fuel−ash composition on residual ash and slag behavior. Twelve different biomass pellets were used: reed canary grass (two different samples), hemp (two different samples), wheat straw, salix, logging residues (two different samples), stem wood (sawdust) as well as spruce, pine, and birch bark. The different pellet qualities were combusted in a commercial under fed pellet burner (20 kW) installed in a reference boiler. Continuous measurements of O2, CO, CO2, HCl, SO2, and total particle matter mass concentrations were determined in the exhaust gas directly after the boiler. The collected slag deposits, the corresponding deposited bottom ash in the boiler and the collected particle matter were characterized with X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray analysis (SEM/EDS). For biomass fuel pellets rich in silicon (either inherent or contaminated with sand) and low content of alkaline earth metals the main part of the potassium reacted with the silicon rich ash-residual, forming sticky alkali−silicate particles, which were not entrained from the burner and thereby giving rise to/initiating slag formation. Silicon rich fuels, i.e. fuels were the ash characteristics were dominated by silicate−alkali chemistry, therefore generally showed relatively high slagging tendencies. Straw fuels have typically this ash composition but exceptions to these general trends exists (e.g., one of the hemp fuels used in this work). Wood derived fuels with a relatively low inherent silicon content therefore showed low or relatively moderate slagging tendencies. However, contamination of sand material to these fuels may greatly enhance the slagging tendencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.