The IND-SAC cocrystal was formed with a unique and interesting carboxylic acid and imide dimer synthons interconnected by weak N-Hcdots, three dots, centeredO hydrogen bonds. The cocrystals were non-hygroscopic and were associated with a significantly faster dissolution rate than indomethacin (gamma-form).
The aim of this study was to investigate the structural and pharmaceutical properties of norfloxacin (a poorly soluble antibacterial drug), its cocrystal, and salts. Norfloxacin in the anhydrous form (form A, 1) was crystallized. It was cocrystallized with isonicotinamide (2), and organic salts were prepared with succinic acid, malonic acid, and maleic acid (3-5, respectively). These phases were characterized by differential scanning calorimetry (DSC), infrared (IR) and Raman spectroscopy, and powder X-ray diffraction (PXRD). Single-crystal X-ray diffraction data were obtained, and crystal structures were solved. The apparent solubility of these phases was determined. Robust O-H‚‚‚O, O-H‚‚‚O -, O-H‚‚‚N, N-H‚‚‚O, N + -H‚‚‚O -, and N-H‚‚‚N interactions were present in all these structures. Quinolone moieties in these structures stack with π‚‚‚π interactions and form channels to include CHCl 3 or H 2 O. Herein we report a new cocrystal and salts of norfloxacin with improved aqueous solubility.
Spray drying is a well established technique for material processing and scale-up. This study investigated the formation of pharmaceutical cocrystals by spray drying. The cocrystal formation mechanisms in spray-drying and solution methods, based on triangular phase diagrams, are discussed. The solvent evaporation of stoichiometric solutions of incongruently saturating cocrystals resulted in a mixture of phases, as dictated by the thermodynamic phase diagram. In contrast, spray drying of similar solutions of incongruently saturating systems generated pure cocrystals. It is thus suggested that the formation of cocrystals by spray drying could be kinetically controlled and/or mediated by the glassy state of the material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.