Clinical studies previously demonstrated that live influenza A virus vaccines derived by genetic reassortment from the mating of influenza A/Ann Arbor/6/60 (H2N2) cold-adapted (ca) donor virus with epidemic wild-type influenza A viruses are reproducibly safe, infectious, immunogenic, and efficacious in the prevention of illness caused by challenge with virulent wild-type virus. These influenza A reassortant virus vaccines also express the ca and temperature sensitivity (ts) phenotypes in vitro, but the genes of the ca virus parent which specify the ca, ts, and attenuation (att) phenotypes have not adequately been defined. To identify the genes associated with each of these phenotypes, we isolated six single-gene substitution reassortant viruses, each of which inherited only one RNA segment from the ca parent virus and the remaining seven RNA segments from the A/Korea/1/82 (H3N2) wild-type virus parent. These were evaluated in vitro for their ca and ts phenotypes and in ferrets, hamsters, and seronegative adult volunteers for the aft phenotype. We found that the polymerase PA gene of the ca parent specifies the ca phenotype and that the PB2 and PB1 genes independently specify the ts phenotype. The PA, M, PB2, and PB1 genes of the ca donor virus each contribute to the att phenotype. The finding that four genes of the ca donor virus contribute to the att phenotype provides a partial explanation for the observed phenotypic stability of ca reassortant viruses following replication in humans.
Federal efforts to establish reliable natural disinfection criteria for ground water supplies require the identification of appropriate indicator viruses to represent pathogenic viruses and an understanding of parameters affecting virus survival and transport in a variety of hydrogeologic settings. A high school septic system and the associated fecal waste‐impacted unconfined sand and gravel aquifer were instrumented to: (1) evaluate if the concentrations of enterovirus and coliphage in this system were sufficient to allow their use as indicator viruses; (2) establish viral transport rates, transport distances, and concentrations in a highly conductive cold water aquifer. Enteroviruses were found in only two of eight assays of the septic tank effluent (0.26 and 4.4 virus/L) and were below detection in eight ground water samples. Male‐specific and somatic coliphage were detectable in both the septic tank effluent (averaging 674,000 and 466,000 coliphage/L, respectively) and in the impacted underlying ground water, decreasing to detection limits beyond 38 m of the drainfield. Virus transport parameters in this aquifer were measured by seeding high numbers of MS2 and ØX174 coliphage into the ground water and documenting their transport over 17.4 m. A portion of the seeded virus traveled at least as fast as the bromide tracer (1 to 2.9 m/d). Proposed natural disinfection criteria would not be met in this aquifer using standard 30.5 m setback distances. In addition, the virus sorption processes and long survival times resulted in presence of viable seed virus for more than nine months.
Representative viruses from twelve RNA and two DNA virus genera have been successfully adapted to growth at sub-optimal temperature (cold-adapted). In almost every case, there was a correlation between acquisition of the cold-adaptation phenotype and loss of virulence in the normal host whether animal or man. Overall, the best method of cold adaptation to develop a live virus vaccine line appeared to be a stepwise lowering of the growth temperature allowing time for multiple lesions to occur and/or be selected. In addition, the starting virus should be a recent isolate not as yet adapted to a tissue culture host and the cold-adaptation process should then occur in a host heterologous to the virus' normal host. These viruses have been reviewed in the light of their cold-adaptation method and successful production of an attenuated line as virus vaccine candidate. Finally, detailed information is presented for the cold-adaptation process in influenza virus.
One of the more common ambiguities which arise when using reverse transcriptase and dideoxynucleotide-chain termination to sequence RNA is a radioactive band of cDNA that extends over all four lanes on a sequencing gel. The adjacent sequences both above and below the band are not affected. Assuming then, that these ambiguities are caused by the termination of the DNA polymerase activity of reverse transcriptase for reasons other than the insertion of a dideoxynucleotide in the growing cDNA chain, terminal deoxynucleotidyl transferase should be able to continue to add deoxynucleotides to these products after the sequencing reaction is complete. It does, clearing the improperly terminated cDNA from these pileup sites, revealing the correct sequence. This technique can also be used to identify the template RNA's 5'-terminal base, although far more units of terminal deoxynucleotidyl transferase are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.