A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we demonstrate a bright and coherent source of strongly entangled photon pairs from a position-controlled nanowire quantum dot with a fidelity as high as 0.859±0.006 and concurrence of 0.80±0.02. The two-photon quantum state is modified via the nanowire shape. Our new nanoscale entangled photon source can be integrated at desired positions in a quantum photonic circuit, single-electron devices and light-emitting diodes.
We report on the ultraclean emission from single quantum dots embedded in pure wurtzite nanowires. Using a two-step growth process combining selective-area and vapor-liquid-solid epitaxy, we grow defect-free wurtzite InP nanowires with embedded InAsP quantum dots, which are clad to diameters sufficient for waveguiding at λ ~ 950 nm. The absence of nearby traps, at both the nanowire surface and along its length in the vicinity of the quantum dot, manifests in excitonic transitions of high spectral purity. Narrow emission line widths (30 μeV) and very-pure single photon emission with a probability of multiphoton emission below 1% are achieved, both of which were not possible in previous work where stacking fault densities were significantly higher.
A comparison is made between the conventional non-selective vapour-liquid-solid growth of InP nanowires and a novel selective-area growth process where the Au-seeded InP nanowires grow exclusively in the openings of a SiO(2) mask on an InP substrate. This new process allows the precise positioning and diameter control of the nanowires required for future advanced device fabrication. The growth temperature range is found to be extended for the selective-area growth technique due to removal of the competition between material incorporation at the Au/nanowire interface and the substrate. A model describing the growth mechanism is presented which successfully accounts for the nanoparticle size-dependent and time-dependent growth rate. The dominant indium collection process is found to be the scattering of the group III source material from the SiO(2) mask and subsequent capture by the nanowire, a process that had previously been ignored for selective-area growth by chemical beam epitaxy.
A major step toward fully integrated quantum optics is the deterministic incorporation of high quality single photon sources in on-chip optical circuits. We show a novel hybrid approach in which preselected III-V single quantum dots in nanowires are transferred and integrated in silicon based photonic circuits. The quantum emitters maintain their high optical quality after integration as verified by measuring a low multiphoton probability of 0.07 ± 0.07 and emission line width as narrow as 3.45 ± 0.48 GHz. Our approach allows for optimum alignment of the quantum dot light emission to the fundamental waveguide mode resulting in very high coupling efficiencies. We estimate a coupling efficiency of 24.3 ± 1.7% from the studied single-photon source to the photonic channel and further show by finite-difference time-domain simulations that for an optimized choice of material and design the efficiency can exceed 90%.
Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III–V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III–V quantum emitters are positioned and deterministically integrated in a complementary metal–oxide–semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies’ full potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.