Peroxisome proliferator-activated receptor ␥(PPAR␥), a nuclear receptor and the target of anti-diabetic thiazolinedione drugs, is known as the master regulator of adipocyte biology. Although it regulates hundreds of adipocyte genes, PPAR␥ binding to endogenous genes has rarely been demonstrated. Here, utilizing chromatin immunoprecipitation (ChIP) coupled with whole genome tiling arrays, we identified 5299 genomic regions of PPAR␥ binding in mouse 3T3-L1 adipocytes. The consensus PPAR␥/RXR␣ "DR-1"-binding motif was found at most of the sites, and ChIP for RXR␣ showed colocalization at nearly all locations tested. Bioinformatics analysis also revealed CCAAT/enhancer-binding protein (C/EBP)-binding motifs in the vicinity of most PPAR␥-binding sites, and genome-wide analysis of C/EBP␣ binding demonstrated that it localized to3350 of the locations bound by PPAR␥. Importantly, most genes induced in adipogenesis were bound by both PPAR␥ and C/EBP␣, while very few were PPAR␥-specific. C/EBP also plays a role at many of these genes, such that both C/EBP␣ and  are required along with PPAR␥ for robust adipocyte-specific gene expression. Thus, PPAR␥ and C/EBP factors cooperatively orchestrate adipocyte biology by adjacent binding on an unanticipated scale.[Keywords: PPAR␥; C/EBP; adipocyte; genome wide; ChIP-chip] Supplemental material is available at http://www.genesdev.org.
Disruption of the circadian clock exacerbates metabolic diseases including obesity and diabetes. Here we show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbα. Rev-erbα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.
Summary Glucagon-like peptide-1 (GLP-1) is a hormone with essential roles in regulating insulin secretion, carbohydrate metabolism and appetite. GLP-1 effects are mediated through binding to GLP-1R, a family B G protein-coupled receptor (GPCR) signaling primarily through the stimulatory G protein Gs. Family B GPCRs are important therapeutic targets, however our understanding of their mechanism of action is limited by the lack of structural information on activated and full-length receptors. Here we show the electron cryo-microscopy structure of the peptide-activated GLP-1R:Gs complex at near atomic resolution. The peptide is clasped between the N-terminal domain and transmembrane core of the receptor, further stabilized by extracellular loops. Conformational changes in the transmembrane domain result in a sharp kink in the middle of transmembrane helix 6, which pivots its intracellular half outward to accommodate the α5 helix of GαsRas. These results provide a structural framework for understanding family B receptor activation through hormone binding.
It has recently been discovered that G protein-coupled receptors (GPCR) 41 and 43 are characterized by having the short chain fatty acids acetate and propionate as their ligands. The objective of this study was to investigate the involvement of GPCR41, GPCR43, and their ligands in the process of adipogenesis. We measured the levels of GPCR41 and GPCR43 mRNA in both adipose and other tissues of the mouse. GRP43 mRNA expression was higher in four types of adipose tissue than in other tissues, whereas GPCR41 mRNA was not detected in any adipose tissues. A high level of GPCR43 expression was found in isolated adipocytes, but expression level was very low in stromal-vascular cells. Expression of GPCR43 was up-regulated in adipose tissues of mice fed a high-fat diet compared with those fed a normal-fat diet. GPCR43 mRNA could not be detected in confluent and undifferentiated 3T3-L1 adipocytes; however, the levels rose with time after the initiation of differentiation. GPCR41 expression was not detected in confluent and differentiated adipocytes. Acetate and propionate treatments increased lipids present as multiple droplets in 3T3-L1 adipocytes. Propionate significantly elevated the level of GPCR43 expression during adipose differentiation, with up-regulation of PPAR-gamma2. Small interfering RNA mediated a reduction of GPCR43 mRNA in 3T3-L1 cells and blocked the process of adipocyte differentiation. In addition, both acetate and propionate inhibited isoproterenol-induced lipolysis in a dose-dependent manner. We conclude that acetate and propionate short chain fatty acids may have important physiological roles in adipogenesis through GPCR43, but not through GPCR41.
Autophagy is an evolutionally conserved catabolic process that recycles nutrients upon starvation and maintains cellular energy homeostasis1–3. Its acute regulation by nutrient sensing signaling pathways is well described, but its longer-term transcriptional regulation is not. The nuclear receptors PPARα and FXR are activated in the fasted or fed liver, respectively4,5. Here we show that both regulate hepatic autophagy. Pharmacologic activation of PPARα reverses the normal suppression of autophagy in the fed state, inducing autophagic lipid degradation, or lipophagy. This response is lost in PPARα knockout (PPARα−/−) mice, which are partially defective in the induction of autophagy by fasting. Pharmacologic activation of the bile acid receptor FXR strongly suppresses the induction of autophagy in the fasting state, and this response is absent in FXR knockout (FXR−/−) mice, which show a partial defect in suppression of hepatic autophagy in the fed state. PPARα and FXR compete for binding to shared sites in autophagic gene promoters, with opposite transcriptional outputs. These results reveal complementary, interlocking mechanisms for regulation of autophagy by nutrient status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.