Peroxisome proliferator-activated receptor ␥(PPAR␥), a nuclear receptor and the target of anti-diabetic thiazolinedione drugs, is known as the master regulator of adipocyte biology. Although it regulates hundreds of adipocyte genes, PPAR␥ binding to endogenous genes has rarely been demonstrated. Here, utilizing chromatin immunoprecipitation (ChIP) coupled with whole genome tiling arrays, we identified 5299 genomic regions of PPAR␥ binding in mouse 3T3-L1 adipocytes. The consensus PPAR␥/RXR␣ "DR-1"-binding motif was found at most of the sites, and ChIP for RXR␣ showed colocalization at nearly all locations tested. Bioinformatics analysis also revealed CCAAT/enhancer-binding protein (C/EBP)-binding motifs in the vicinity of most PPAR␥-binding sites, and genome-wide analysis of C/EBP␣ binding demonstrated that it localized to3350 of the locations bound by PPAR␥. Importantly, most genes induced in adipogenesis were bound by both PPAR␥ and C/EBP␣, while very few were PPAR␥-specific. C/EBP also plays a role at many of these genes, such that both C/EBP␣ and  are required along with PPAR␥ for robust adipocyte-specific gene expression. Thus, PPAR␥ and C/EBP factors cooperatively orchestrate adipocyte biology by adjacent binding on an unanticipated scale.[Keywords: PPAR␥; C/EBP; adipocyte; genome wide; ChIP-chip] Supplemental material is available at http://www.genesdev.org.
The histone H3 lysine 79 methyltransferase DOT1L/KMT4 can promote an oncogenic pattern of gene expression through binding with several MLL fusion partners found in acute leukemia. However, the normal function of DOT1L in mammalian gene regulation is poorly understood. Here we report that DOT1L recruitment is ubiquitously coupled with active transcription in diverse mammalian cell types. DOT1L preferentially occupies the proximal transcribed region of active genes, correlating with enrichment of H3K79 di-and trimethylation. Furthermore, Dot1l mutant fibroblasts lacked H3K79 di-and trimethylation at all sites examined, indicating that DOT1L is the sole enzyme responsible for these marks. Importantly, we identified chromatin immunoprecipitation (ChIP) assay conditions necessary for reliable H3K79 methylation detection. ChIP-chip tiling arrays revealed that levels of all degrees of genic H3K79 methylation correlate with mRNA abundance and dynamically respond to changes in gene activity. Conversion of H3K79 monomethylation into di-and trimethylation correlated with the transition from low-to high-level gene transcription. We also observed enrichment of H3K79 monomethylation at intergenic regions occupied by DNA-binding transcriptional activators. Our findings highlight several similarities between the patterning of H3K4 methylation and that of H3K79 methylation in mammalian chromatin, suggesting a widespread mechanism for parallel or sequential recruitment of DOT1L and MLL to genes in their normal "on" state.Histone lysine methylation encodes genomic functions into the chemical state of nucleosomes (38). The collective actions of lysine methyltransferase and lysine demethylase enzymes maintain a landscape of steady-state methylation of histones around which eukaryotic DNA is packaged. Histone methylation can facilitate or abrogate a variety of protein-protein interactions occurring along the chromatin fiber, thus permitting stable regulation over localized regions of the genome. Several recent high-throughput descriptions of histone lysine methylation across mammalian genomes have documented the pervasiveness of this form of epigenetic organization (2, 15, 23). However, the full biological significance of most histone lysine methylation pathways in mammals has yet to be revealed.Methylation of histone H3 at lysine 79 (H3K79) is conserved among most eukaryotic species. In budding yeast, nearly 90% of histone H3 bears monomethylation (H3K79me1), dimethylation (H3K79me2), or trimethylation (H3K79me3) at lysine 79, all catalyzed exclusively by the histone methyltransferase Dot1 (27, 46). H3K79 methylation is widely distributed across the euchromatic yeast genome but markedly depleted at heterochromatic mating-type, ribosomal DNA, and telomeric loci (26,30). Genes in these regions are controlled by silent information regulator (SIR) proteins, which can bind nucleosomes and silence transcription (reviewed in reference 33). Genetic, as well as biochemical, evidence suggests a mutual antagonism between H3K79 methylation by D...
Transcriptional co-activators were originally identified as proteins that act as intermediaries between upstream activators and the basal transcription machinery. The discovery that co-activators such as Tetrahymena and yeast Gcn5, as well as human p300/CBP, pCAF, Src-1, ACTR and TAFII250, can acetylate histones suggests that activators may be involved in targeting acetylation activity to promoters. Several histone deacetylases have been linked to transcriptional co-repressor proteins, suggesting that the action of both acetylases and deacetylases is important in the regulation of many genes. Here we demonstrate the binding of two native yeast histone acetyltransferase (HAT) complexes to the herpesvirus VP16 activation domain and the yeast transcriptional activator Gcn4, and show that it is their interaction with the VP16 activation domain that targets Gal4-VP16-bound nucleosomes for acetylation. We find that Gal4-VP16-driven transcription from chromatin templates is stimulated by both HAT complexes in an acetyl CoA-dependent reaction. Our results demonstrate the targeting of native HAT complexes by a transcription-activation domain to nucleosomes in order to activate transcription.
A number of transcriptional coactivator proteins have been identified as histone acetyltransferase (HAT) proteins, providing a direct molecular basis for the coupling of histone acetylation and transcriptional activation. The yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex requires the coactivator protein Gcn5 for HAT activity. Identification of protein subunits by mass spectrometry and immunoblotting revealed that the TATA binding protein-associated factors (TAF(II)s) TAF(II)90, -68/61, -60, -25/23, and -20/17 are integral components of this complex. In addition, TAF(II)68 was required for both SAGA-dependent nucleosomal HAT activity and transcriptional activation from chromatin templates in vitro. These results illustrate a role for certain TAF(II) proteins in the regulation of gene expression at the level of chromatin modification that is distinct from the TFIID complex and TAF(II)145.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.