The increasing volume of ChIP-chip and ChIP-seq data being generated creates a challenge for standard, integrative and reproducible bioinformatics data analysis platforms. We developed a web-based application called Cistrome, based on the Galaxy open source framework. In addition to the standard Galaxy functions, Cistrome has 29 ChIP-chip- and ChIP-seq-specific tools in three major categories, from preliminary peak calling and correlation analyses to downstream genome feature association, gene expression analyses, and motif discovery. Cistrome is available at http://cistrome.org/ap/.
The histone H3 lysine 79 methyltransferase DOT1L/KMT4 can promote an oncogenic pattern of gene expression through binding with several MLL fusion partners found in acute leukemia. However, the normal function of DOT1L in mammalian gene regulation is poorly understood. Here we report that DOT1L recruitment is ubiquitously coupled with active transcription in diverse mammalian cell types. DOT1L preferentially occupies the proximal transcribed region of active genes, correlating with enrichment of H3K79 di-and trimethylation. Furthermore, Dot1l mutant fibroblasts lacked H3K79 di-and trimethylation at all sites examined, indicating that DOT1L is the sole enzyme responsible for these marks. Importantly, we identified chromatin immunoprecipitation (ChIP) assay conditions necessary for reliable H3K79 methylation detection. ChIP-chip tiling arrays revealed that levels of all degrees of genic H3K79 methylation correlate with mRNA abundance and dynamically respond to changes in gene activity. Conversion of H3K79 monomethylation into di-and trimethylation correlated with the transition from low-to high-level gene transcription. We also observed enrichment of H3K79 monomethylation at intergenic regions occupied by DNA-binding transcriptional activators. Our findings highlight several similarities between the patterning of H3K4 methylation and that of H3K79 methylation in mammalian chromatin, suggesting a widespread mechanism for parallel or sequential recruitment of DOT1L and MLL to genes in their normal "on" state.Histone lysine methylation encodes genomic functions into the chemical state of nucleosomes (38). The collective actions of lysine methyltransferase and lysine demethylase enzymes maintain a landscape of steady-state methylation of histones around which eukaryotic DNA is packaged. Histone methylation can facilitate or abrogate a variety of protein-protein interactions occurring along the chromatin fiber, thus permitting stable regulation over localized regions of the genome. Several recent high-throughput descriptions of histone lysine methylation across mammalian genomes have documented the pervasiveness of this form of epigenetic organization (2, 15, 23). However, the full biological significance of most histone lysine methylation pathways in mammals has yet to be revealed.Methylation of histone H3 at lysine 79 (H3K79) is conserved among most eukaryotic species. In budding yeast, nearly 90% of histone H3 bears monomethylation (H3K79me1), dimethylation (H3K79me2), or trimethylation (H3K79me3) at lysine 79, all catalyzed exclusively by the histone methyltransferase Dot1 (27, 46). H3K79 methylation is widely distributed across the euchromatic yeast genome but markedly depleted at heterochromatic mating-type, ribosomal DNA, and telomeric loci (26,30). Genes in these regions are controlled by silent information regulator (SIR) proteins, which can bind nucleosomes and silence transcription (reviewed in reference 33). Genetic, as well as biochemical, evidence suggests a mutual antagonism between H3K79 methylation by D...
The development of methods to achieve efficient reprogramming of human cells while avoiding the permanent presence of reprogramming transgenes represents a critical step towards the use of induced pluripotent stem cells (iPSC) for clinical purposes, such as disease modeling or reconstituting therapies. While several methods exist for generating iPSC free of reprogramming transgenes from mouse cells or neonatal normal human tissues, a sufficiently efficient reprogramming system is still needed in order to achieve the widespread derivation of disease-specific iPSC from humans with inherited or degenerative diseases. Here we report the use of a humanized version of a single lentiviral ‘stem cell cassette’ vector in order to accomplish efficient reprogramming of normal or diseased skin fibroblasts obtained from humans of virtually any age. Simultaneous transfer of either 3 or 4 reprogramming factors into human target cells using this single vector allows derivation of human iPSC containing a single excisable viral integration, that upon removal generates human iPSC free of integrated transgenes. As a proof of principle, here we apply this strategy to generate >100 lung disease-specific iPSC lines from individuals with a variety of diseases affecting the epithelial, endothelial, or interstitial compartments of the lung, including cystic fibrosis, alpha-1 antitrypsin deficiency-related emphysema, scleroderma (SSc), and sickle cell disease. Moreover, we demonstrate that human iPSC generated with this approach have the ability to robustly differentiate into definitive endoderm in vitro, the developmental precursor tissue of lung epithelia.
Enhancers can regulate designate promoters over long distances by forming chromatin loops. Whether chromatin loops are lost or reconfigured during gene repression is largely unexplored. We examined the chromosome conformation of the Kit gene that is expressed during early erythropoiesis but is downregulated upon cell maturation. Kit expression is controlled by sequential occupancy of two GATA family transcription factors. In immature cells, a distal enhancer bound by GATA-2 is in physical proximity with the active Kit promoter. Upon cell maturation, GATA-1 displaces GATA-2 and triggers a loss of the enhancer/promoter interaction. Moreover, GATA-1 reciprocally increases the proximity in nuclear space among distinct downstream GATA elements. GATA-1-induced transitions in chromatin conformation are not simply the consequence of transcription inhibition and require the cofactor FOG-1. This work shows that a GATA factor exchange reconfigures higher-order chromatin organization, and suggests that de novo chromatin loop formation is employed by nuclear factors to specify repressive outcomes.
SUMMARY The use of human pluripotent stem cells for laboratory studies and cell-based therapies is hampered by their tumor-forming potential and limited ability to generate pure populations of differentiated cell types in vitro. To address these issues, we established endodermal progenitor (EP) cell lines from human embryonic and induced pluripotent stem cells. Optimized growth conditions were established that allow near unlimited (>1016) EP cell self-renewal in which they display a morphology and gene expression pattern characteristic of definitive endoderm. Upon manipulation of their culture conditions in vitro or transplantation into mice, clonally derived EP cells differentiate into numerous endodermal lineages, including monohormonal glucose-responsive pancreatic β-cells, hepatocytes, and intestinal epithelia. Importantly, EP cells are nontumorigenic in vivo. Thus, EP cells represent a powerful tool to study endoderm specification and offer a potentially safe source of endodermal-derived tissues for transplantation therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.