We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user's prior knowledge. In particular, a user can express his knowledge-for the most part-as a single prior Bayesian network for the domain.
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user's prior knowledge. In particular, a user can express his knowledge-for the most part-as a single prior Bayesian network for the domain.
Abstract. Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness that characterize naive Bayes. We experimentally tested these approaches, using problems from the University of California at Irvine repository, and compared them to C4.5, naive Bayes, and wrapper methods for feature selection.
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. Previous work has concentrated on metrics for domains containing only discrete variables, under the assumption that data represents a multinomial sample. In this paper, we extend this work, developing scoring metrics for domains containing only continuous variables under the assumption that continuous data is sampled from a multivariate normal distribution. Our work extends traditional statistical approaches for identifying vanishing regression coefficients in that we identify two important assumptions, called event equivalence and parameter modularity, that when combined allow the construction of prior distributions for multivariate normal parameters from a single prior Bayesian network specified by a user.
An important feature of Bayesian networks is that they facilitate explicit encoding of information about independencies in the domain, information that is indispensable for efficient inferencing. This article characterizes all independence assertions that logically follow from the topology of a network and develops a linear time algorithm that identifies these assertions. The algorithm's correctness is based on the soundness of a graphical criterion, called d-separation, and its optimality stems from the completeness of dseparation. An enhanced version of d-separation, called D-separation, is defined, extending the algorithm to networks that encode functional dependencies. Finally, the algorithm is shown to work for a broad class of nonprobabilistic independencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.