Abstract. Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state-of-the-art classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we evaluate approaches for inducing classifiers from data, based on the theory of learning Bayesian networks. These networks are factored representations of probability distributions that generalize the naive Bayesian classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness that characterize naive Bayes. We experimentally tested these approaches, using problems from the University of California at Irvine repository, and compared them to C4.5, naive Bayes, and wrapper methods for feature selection.
In this paper we examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional proba bility tables (CPTs), that quantify these networks. This increases the space of possible models, en abling the representation of CPTs with a variable number of parameters that depends on the learned local structures. The resulting learning procedure is capable of inducing models that better emulate the real complexity of the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local structures, as well as an empirical evaluation ofthe proposed method. This evaluation indicates that learning curves characterizing the procedure that exploits the local structure converge faster than these of the standard procedure. Our results also show that networks learned with local structure tend to be more complex (in terms of arcs), yet require less parameters.
Markov decision processes (MDPs) have proven to be popular models for decision-theoretic planning, but standard dynamic programming algorithms for solving MDPs rely on explicit, state-based specifications and computations. To alleviate the combinatorial problems associated with such methods, we propose new representational and computational techniques for MDPs that exploit certain types of problem structure. We use dynamic Bayesian networks (with decision trees representing the local families of conditional probability distributions) to represent stochastic actions in an MDP, together with a decision-tree representation of rewards. Based on this representation, we develop versions of standard dynamic programming algorithms that directly manipulate decision-tree representations of policies and value functions. This generally obviates the need for state-by-state computation, aggregating states at the leaves of these trees and requiring computations only for each aggregate state. The key to these algorithms is a decision-theoretic generalization of classic regression analysis, in which we determine the features relevant to predicting expected value. We demonstrate the method empirically on several planning problems,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.