Ferroptosis is a novel type of cell death with distinct properties and recognizing functions involved in physical conditions or various diseases including cancers. The fast-growing studies of ferroptosis in cancer have boosted a perspective for its usage in cancer therapeutics. Here, we review the current findings of ferroptosis regulation and especially focus on the function of ncRNAs in mediating the process of cell ferroptotic death and on how ferroptosis was in relation to other regulated cell deaths. Aberrant ferroptosis in diverse cancer types and tissues were summarized, and we elaborated recent data about the novel actors of some “conventional” drugs or natural compounds as ferroptosis inducers in cancer. Finally, we deliberate future orientation for ferroptosis in cancer cells and current unsettled issues, which may forward the speed of clinical use of ferroptosis induction in cancer treatment.
Circular RNAs (circRNAs) are a class of endogendous RNAs that form a covalently closed continuous loop and exist extensively in mammalian cells. Majority of circRNAs are conserved across species and often show tissue/developmental stage-specific expression. CircRNAs were first thought to be the result of splicing error; however, subsequent research shows that circRNAs can function as microRNA (miRNA) sponges and regulate splicing and transcription. Emerging evidence shows that circRNAs possess closely associated with human diseases, especially cancers, and may serve as better biomarkers. After miRNA and long noncoding RNA (lncRNA), circRNAs are becoming a new hotspot in the field of RNA of cancer. Here, we review biogenesis and metabolism of circRNAs, their functions, and potential roles in cancer.
High-risk human papillomavirus (HR-HPV) has been recognized as a major causative agent for cervical cancer. Upon HPV infection, early genes E6 and E7 play important roles in maintaining malignant phenotype of cervical cancer cells. By using clustered regularly interspaced short palindromic repeats- (CRISPR-) associated protein system (CRISPR/Cas system), a widely used genome editing tool in many organisms, to target HPV16-E7 DNA in HPV positive cell lines, we showed for the first time that the HPV16-E7 single-guide RNA (sgRNA) guided CRISPR/Cas system could disrupt HPV16-E7 DNA at specific sites, inducing apoptosis and growth inhibition in HPV positive SiHa and Caski cells, but not in HPV negative C33A and HEK293 cells. Moreover, disruption of E7 DNA directly leads to downregulation of E7 protein and upregulation of tumor suppressor protein pRb. Therefore, our results suggest that HPV16-E7 gRNA guided CRISPR/Cas system might be used as a therapeutic strategy for the treatment of cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.