Precipitates in the conventionally processed (solution treatment followed by aging) AZ80 alloy are coarse, cellular, and incoherent. They nucleate and grow on the basal planes of the matrix or distribute discontinuously in the alloy. Their unique morphology and undesired distribution make them ineffective for precipitation strengthening. This condition, however, can be modified by applying selected deformation and heat treatment conditions. The effect of deformation and heat treatment on the morphology and distribution of precipitates has been studied. Deformation was introduced by hot extrusion, cold rolling, or equal channel angular pressing (ECAP). The microstructures were characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results showed that cold deformation improved precipitation more significantly than hot deformation, and twinning promoted precipitation more effectively than slip. When ECAP was applied, the B c -route induced more precipitates than the A-route.
The federally endangered Cumberlandian combshell (Epioblasma brevidens) was propagated and reared to taggable size (5–10 mm), and released to the Powell River, Tennessee, to augment a relict population. Methodology using passive integrated transponder (PIT) tags on these mussels greatly facilitated the detection process. The overall mean detection probability and survival rate of released individuals reached 97.8 to 98.4% and 99.7 to 99.9% (per month), respectively, during nine successive recapture occasions in the 2-year study period, regardless of seasonality. Nonhierarchical models and hierarchical models incorporating individual and seasonal variations through a Bayesian approach were compared and resulted in similar performance of prediction for detection probability and survival rate of mussels. This is the first study to apply the mark–recapture method to laboratory-reared mussels using PIT tags and stochastic models. Quantitative analyses for individual heterogeneity allowed examination of demographic variance and effects of heterogeneity on population dynamics, although the individual and seasonal variations were small in this study. Our results provide useful information in implementing conservation strategies of this faunal group and a framework for other species or similar studies.
Doubly uniparental inheritance (DUI) of mitochondrial DNA, found only in some bivalve families and characterized by the existence of gender-associated mtDNA lineages that are inherited through males (M-type) or females (F-type), is one of the very few exceptions to the general rule of strict maternal mtDNA inheritance in animals. M-type sequences are often undetected and hence still underrepresented in the GenBank, which hinders the progress of the understanding of the DUI phenomenon. We have sequenced and analyzed the complete M and F mitogenomes of a freshwater mussel, Potamilus alatus. The M-type was 493 bp longer (M = 16 560, F = 16 067 bp). Gene contents, order and the distribution of genes between L and H strands were typical for unionid mussels. Candidates for the two ORFan genes (forf and morf) were found in respective mitogenomes. Both mitogenomes had a very similar A+T bias: F = 61% and M = 62.2%. The M mitogenome-specific cox2 extension (144 bp) is much shorter than in other sequenced unionid mitogenomes (531–576 bp), which might be characteristic for the Potamilus genus. The overall topology of the phylogenetic tree is in very good agreement with the currently accepted phylogenetic relationships within the Unionidae: both studied sequences were placed within the Ambleminae subfamily clusters in the corresponding M and F clades.
The toxicity of cyanide to the early life stages of freshwater mussels (order Unionida) has remained unexplored. Cyanide is known to be acutely toxic to other aquatic organisms. Cyanide-containing compounds, such as sodium ferrocyanide and ferric ferrocyanide, are commonly added to road deicing salts as anticaking agents. The purpose of the present study was to assess the acute toxicity of three cyanide compounds (sodium cyanide, sodium ferrocyanide, and ferric ferrocyanide), two road salts containing cyanide anticaking agents (Morton and Cargill brands), a brine deicing solution (Liquidow brand), and a reference salt (sodium chloride) on glochidia (larvae) and juveniles of the freshwater mussel Villosa iris. Sodium ferrocyanide and ferric ferrocyanide were not acutely toxic to glochidia and juvenile mussels at concentrations up to 1,000 mg/L and 100 mg/L, respectively. Lowest observed effect concentrations (LOECs) for these two chemicals ranged from 10 to >1,000 mg/L. Sodium cyanide was acutely toxic to juvenile mussels, with a 96-h median effective concentration (EC50) of 1.10 mg/L, although glochidia tolerated concentrations up to 10 mg/L. The EC50s for sodium chloride, Liquidow brine, Morton road salt, and Cargill road salt were not significantly different for tests within the same life stage and test duration (range, 1.66-4.92 g/L). These results indicate that cyanide-containing anticaking agents do not exacerbate the toxicity of road salts, but that the use of road salts and brine solutions for deicing or dust control on roads may warrant further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.