The feasibility of using the highly purified native attachment (G) protein in a subunit vaccine against respiratory syncytial virus (RSV) was examined in a murine model with or without the fusion (F) protein of RSV and the adjuvant QS-21. The studies established that QS-21 was more potent than AlOH as an adjuvant for both F and G glycoproteins. Augmented antigen-dependent killer cell activity and complement-assisted serum neutralizing and anti-F and G protein immunoglobulin G2a antibody titers were observed. Immunization with G/QS-21 generated immune responses that were characterized by low levels of antigen-dependent killer cell activity, elevated levels of interleukin-5 (IL-5) and percentages of eosinophils in the bronchoalveolar lavage fluids after challenge, and splenic immunocytes that secreted IL-5 but not gamma interferon (IFN-␥) after in vitro stimulation with purified whole virus antigens. The pulmonary eosinophilia was similar to that induced by a facsimile of a formalin-inactivated vaccine used in previous clinical trials and was prevented by prior in vivo treatment with anti-IL-5 but not with control immunoglobulin G or anti-IFN-␥ neutralizing monoclonal antibodies. Thus the data implied that vaccination with G/QS-21 generated helper T-cell immune responses that were type 2 in nature. Alternatively, the data suggested that the helper T-cell immune responses elicited by F/QS-21 were more type 1 in character. Neither eosinophilia nor elevated levels of IL-5 were observed in the lungs of mice after challenge. Noteworthy levels of antigen-dependent killer cell activity was observed, and splenic immunocytes secreted copious quantities of IFN-␥. Immunization with a combination vaccine composed of highly purified native F and G proteins plus QS-21 (F؉G/QS-21) resulted in augmented complement-assisted serum neutralizing antibody titers compared with vaccination with either F/QS-21 or G/QS-21 alone. However, following vaccination with F؉G/QS-21, the bronchoalveolar lavage fluids contained significant increases in IL-5 and percentages of eosinophils after challenge, the spleen cells appeared to secrete less IFN-␥ after in vitro stimulation, and there was no evidence of increased numbers of antigen-dependent killer cell precursors. Taken together, the data imply that native G protein influences the nature of the immune responses elicited by F/QS-21. The results therefore suggest that G, not F, protein has more potential to bias the host for atypical pulmonary inflammatory responses.
The attachment protein or G protein of the A2 strain of human respiratory syncytial virus (RSV) was digested with trypsin and the resultant peptides separated by reverse-phase high-performance liquid chromatography (HPLC). One tryptic peptide produced a mass by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) corresponding to residues 152-187 with the four Cys residues of the ectodomain (residues 173, 176, 182, and 186) in disulfide linkage and absence of glycosylation. Sub-digestion of this tryptic peptide with pepsin and thermolysin produced peptides consistent with disulfide bonds between Cys173 and Cys186 and between Cys176 and Cys182. Analysis of ions produced by post-source decay of a peptic peptide during MALDI-TOF-MS revealed fragmentation of peptide bonds with minimal fission of an inter-chain disulfide bond. Ions produced by this unprecedented MALDI-induced post-source fragmentation corroborated the existence of the disulfide arrangement deduced from mass analysis of proteolysis products. These findings indicate that the ectodomain of the G protein has a non-glycosylated subdomain containing a "cystine noose."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.