Our knowledge of the induction of new molecules by IFN-gamma has led to the characterization of IP-10 and the preparation of a monospecific, polyclonal antibody. Using this reagent we have now examined inflammatory states occurring in human skin and used immunocytochemical staining for the expression of both Ia and IP-10 determinants. After evoking a delayed-type response to purified protein derivative of tuberculin (PPD), we noted the presence of IP-10 in dermal macrophages and endothelial cells. Intense staining of the basal layer of epidermal keratinocytes was prominent at 41 h, and by 1 wk the entire epidermis was staining. The comparison of the amount of IP-10 secreted by keratinocytes vs. macrophages, fibroblasts, and endothelial cells revealed that keratinocytes were by far the major producers of this molecule. The expression of Ia occurred in conjunction with IP-10. The injection of rIFN-gamma mimicked many of the features of the PPD response, including the expression of both Ia and IP-10 by epidermal keratinocytes. Coexpression was also found in the natural lesions of tuberculoid leprosy and cutaneous Leishmaniasis. However, it was absent in lepromatous leprosy, a state where activated T lymphocytes are not present. We suggest that the local production of IFN-gamma by T cells of the dermal infiltrate induces IP-10 formation in both the dermis and epidermis. IP-10 and Ia then serve as specific markers of immune IFN and its possible influence on effector cells of the cell mediated immune response.
We analyzed the immune responses evoked by a series of overlapping peptides to better understand the molecular basis for respiratory syncytial virus (RSV) G protein–induced eosinophilia in BALB/c mice. In vitro stimulation of spleen cells from natural G protein–primed mice showed dominant proliferative and cytokine (interferon [IFN]-γ and interleukin [IL]-5) responses to a peptide encompassing amino acids 184–198. Mice vaccinated with peptide 184– 198 conjugated to keyhole limpet hemocyanin showed significant pulmonary eosinophilia (39.5%) after challenge with live RSV. In contrast, mice immunized with a peptide (208–222) conjugate associated with induction of IFN-γ secreting spleen cells did not exhibit pulmonary eosinophilia after challenge. The in vivo depletion of CD4+ cells abrogated pulmonary eosinophilia in mice vaccinated with the peptide 184–198 conjugate, whereas the depletion of CD8+ cells had a negligible effect. Therefore, we have identified an association between peptide 184– 198 of natural G protein and the CD4+ T cell–mediated induction of pulmonary eosinophilia after live RSV challenge. Out of 43 human donors, 6 provided peripheral blood mononuclear cells that showed reactivity to G protein from RSV A2, 3 of which responded to peptide 184– 198. The results have important implications for the development of a vaccine against RSV.
The induction of a delayed-type cell-mediated immune response in the skin of leprosy patients leads to extensive mononuclear cell accumulation in the dermis and alterations in the keratinocytes of the overlying epidermis (1) . This includes keratinocyte proliferation, epidermal thickening, the expression of IFN-y-induced peptide, IP-10 (2), and surface Ia antigen (1) . Intradermal injection of human rIFN-y into the skin of leprosy patients mimics the delayed cellular response to soluble antigen (3, 4) . Not only are mononuclear leukocytes recruited into the dermal site, but proliferation and antigenic changes of the epidermal keratinocytes are also observed. In an effort to better understand the intercellular dialogues that occur in a cutaneous cell-mediated immune response, we have developed an in vitro assay to detect changes in keratinocyte multiplication in response to inflammatory cell supernatants and purified or recombinant cytokines . Evidence is presented that activated PBMC produce factors that modify keratinocyte growth and differentiation . Our results suggest that T lymphocytes are the cells responsible for this activity. We show that IFNy and transforming growth factor ß (TGF ß)t inhibit keratinocyte growth, whereas IL-3 and granulocyte/monocyte colony-stimulating factor (GM-CSF) stimulate keratinocyte growth.
The feasibility of using the highly purified native attachment (G) protein in a subunit vaccine against respiratory syncytial virus (RSV) was examined in a murine model with or without the fusion (F) protein of RSV and the adjuvant QS-21. The studies established that QS-21 was more potent than AlOH as an adjuvant for both F and G glycoproteins. Augmented antigen-dependent killer cell activity and complement-assisted serum neutralizing and anti-F and G protein immunoglobulin G2a antibody titers were observed. Immunization with G/QS-21 generated immune responses that were characterized by low levels of antigen-dependent killer cell activity, elevated levels of interleukin-5 (IL-5) and percentages of eosinophils in the bronchoalveolar lavage fluids after challenge, and splenic immunocytes that secreted IL-5 but not gamma interferon (IFN-␥) after in vitro stimulation with purified whole virus antigens. The pulmonary eosinophilia was similar to that induced by a facsimile of a formalin-inactivated vaccine used in previous clinical trials and was prevented by prior in vivo treatment with anti-IL-5 but not with control immunoglobulin G or anti-IFN-␥ neutralizing monoclonal antibodies. Thus the data implied that vaccination with G/QS-21 generated helper T-cell immune responses that were type 2 in nature. Alternatively, the data suggested that the helper T-cell immune responses elicited by F/QS-21 were more type 1 in character. Neither eosinophilia nor elevated levels of IL-5 were observed in the lungs of mice after challenge. Noteworthy levels of antigen-dependent killer cell activity was observed, and splenic immunocytes secreted copious quantities of IFN-␥. Immunization with a combination vaccine composed of highly purified native F and G proteins plus QS-21 (F؉G/QS-21) resulted in augmented complement-assisted serum neutralizing antibody titers compared with vaccination with either F/QS-21 or G/QS-21 alone. However, following vaccination with F؉G/QS-21, the bronchoalveolar lavage fluids contained significant increases in IL-5 and percentages of eosinophils after challenge, the spleen cells appeared to secrete less IFN-␥ after in vitro stimulation, and there was no evidence of increased numbers of antigen-dependent killer cell precursors. Taken together, the data imply that native G protein influences the nature of the immune responses elicited by F/QS-21. The results therefore suggest that G, not F, protein has more potential to bias the host for atypical pulmonary inflammatory responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.