Alzheimer's disease is a progressive neurodegenerative disorder with a decades-long pre-symptomatic phase, substantiating the need for prodromal biomarker development and early intervention. To deconstruct the processes underlying disease progression and identify potential biomarkers, we used neuroimaging techniques with high translational potential to human clinical studies in the TgF344-AD rat model which recapitulates the full spectrum of Alzheimer’s neuropathology (progressive amyloid deposition, tauopathy, frank neuronal loss, gliosis, and cognitive dysfunction). We employed longitudinal magnetic resonance imaging and spectroscopy in conjunction with behavioural testing to characterize multiple facets of disease pathology in male and female TgF344-AD rats (n=26, 14M/12F) relative to wildtype littermates (n=24, 12M/12F). Testing was performed at 4-, 10-, 16-, and 18-months, covering much of the adult rat lifespan and multiple stages of disease progression. The TgF344-AD model demonstrated impaired spatial reference memory in the Barnes Maze by 4 months of age, followed by neurochemical abnormalities in the hippocampus by 10 months and major structural changes by 16 months. Specifically, TgF344-AD rats displayed increased total choline and lactate, and decreased total creatine, taurine, and N-acetylaspartate to myo-inositol ratio, dentate gyrus hypertrophy, and atrophy in the hippocampus, hypothalamus, and nucleus accumbens. Overall, these findings support the use of magnetic resonance imaging and spectroscopy for the development of non-invasive biomarkers of disease progression, clarify the timing of pathological feature presentation in this model, and contribute to the validation of the TgF344-AD rat as a highly relevant model for preclinical Alzheimer's disease research.
Background Preclinical neuroimaging allows for the assessment of brain anatomy, connectivity and function in laboratory animals, such as mice and rats. Most of these studies are performed under anesthesia to avoid movement during the scanning sessions. Method Due to the limitations associated with anesthetized imaging, recent efforts have been made to conduct rodent imaging studies in awake animals, habituated to the restraint systems used in these instances. As of now, only one such system is commercially available for mouse scanning (Animal Imaging Research, Boston, MA, USA) integrating the radiofrequency coil electronics with the restraining element, an approach which, although effective in reducing head motion during awake imaging, has some limitations. In the current report, we present a novel mouse restraining system that addresses some of these limitations. Results/Comparison to other methods The effectiveness of the restraining system was evaluated in terms of three-dimensional linear head movement across two consecutive functional MRI scans (total 20 min) in 33 awake mice. Head movement was minimal, recorded in roughly 12% of the time-series. Respiration rate during the acclimation procedure dropped while the bolus count remained unchanged. Body movement during functional acquisitions did not have a significant effect on magnetic field (B0) homogeneity. Conclusion/novelty Compared to the commercially available system, the benefit of the current design is two-fold: 1) it is compatible with a range of commercially-available coils, and 2) it allows for the pairing of neuroimaging with other established techniques involving intracranial cannulation (i.e. microinfusion and optogenetics).
Systemic administration of the noncompetitive NMDA-receptor antagonist, MK-801, has been proposed to model cognitive deficits similar to those seen in patients with schizophrenia. The present work investigated the ability of a dopamine-binding DNA aptamer to regulate these MK-801-induced cognitive deficits when injected into the nucleus accumbens. Rats were trained to bar press for chocolate pellet rewards then randomly assigned to receive an intra-accumbens injection of a DNA aptamer (200 nM; n = 7), tris buffer (n = 6) or a randomized DNA oligonucleotide (n = 7). Animals were then treated systemically with MK-801 (0.1 mg/kg) and tested for their ability to extinguish their bar pressing response. Two control groups were also included that did not receive MK-801. Data revealed that injection of Tris buffer or the random oligonucleotide sequence into the nucleus accumbens prior to treatment with MK-801 did not reduce the MK-801-induced extinction deficit. Animals continued to press at a high rate over the entire course of the extinction session. Injection of the dopamine aptamer reversed this MK-801-induced elevation in lever pressing to levels as seen in rats not treated with MK-801. Tests for activity showed that the aptamer did not impair locomotor activity. Results demonstrate the in vivo utility of DNA aptamers as tools to investigate neurobiological processes in preclinical animal models of mental health disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.