Chimeric antigen receptors (CARs) significantly enhance the anti-tumor activity of immune effector cells. Although most studies have evaluated CAR expression in T cells, here we evaluate different CAR constructs that improve natural killer (NK) cell-mediated killing. We identified a CAR containing the transmembrane domain of NKG2D, the 2B4 co-stimulatory domain, and the CD3ζ signaling domain to mediate strong antigen-specific NK cell signaling. NK cells derived from human iPSCs that express this CAR (NK-CAR-iPSC-NK cells) have a typical NK cell phenotype and demonstrate improved anti-tumor activity compared with T-CAR-expressing iPSC-derived NK cells (T-CAR-iPSC-NK cells) and non-CAR-expressing cells. In an ovarian cancer xenograft model, NK-CAR-iPSC-NK cells significantly inhibited tumor growth and prolonged survival compared with PB-NK cells, iPSC-NK cells, or T-CAR-iPSC-NK cells. Additionally, NK-CAR-iPSC-NK cells demonstrate in vivo activity similar to that of T-CAR-expressing T cells, although with less toxicity. These NK-CAR-iPSC-NK cells now provide standardized, targeted "off-the-shelf" lymphocytes for anti-cancer immunotherapy.
Stem cells are unique cell populations with the ability to undergo both self-renewal and differentiation. A wide variety of adult mammalian tissues harbors stem cells, yet "adult" stem cells may be capable of developing into only a limited number of cell types. In contrast, embryonic stem (ES) cells, derived from blastocyst-stage early mammalian embryos, have the ability to form any fully differentiated cell of the body. Human ES cells have a normal karyotype, maintain high telomerase activity, and exhibit remarkable long-term proliferative potential, providing the possibility for unlimited expansion in culture. Furthermore, they can differentiate into derivatives of all three embryonic germ layers when transferred to an in vivo environment. Data are now emerging that demonstrate human ES cells can initiate lineage-specific differentiation programs of many tissue and cell types in vitro. Based on this property, it is likely that human ES cells will provide a useful differentiation culture system to study the mechanisms underlying many facets of human development. Because they have the dual ability to proliferate indefinitely and differentiate into multiple tissue types, human ES cells could potentially provide an unlimited supply of tissue for human transplantation. Though human ES cell-based transplantation therapy holds great promise to successfully treat a variety of diseases (e.g., Parkinson's disease, diabetes, and heart failure) many barriers remain in the way of successful clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.