Word2vec is a powerful machine learning tool that emerged from Natural Language Processing (NLP) and is now applied in multiple domains, including recommender systems, forecasting, and network analysis. As Word2vec is often used off the shelf, we address the question of whether the default hyperparameters are suitable for recommender systems. The answer is emphatically no. In this paper, we first elucidate the importance of hyperparameter optimization and show that unconstrained optimization yields an average 221% improvement in hit rate over the default parameters. However, unconstrained optimization leads to hyperparameter settings that are very expensive and not feasible for large scale recommendation tasks. To this end, we demonstrate 138% average improvement in hit rate with a runtime budget-constrained hyperparameter optimization. Furthermore, to make hyperparameter optimization applicable for large scale recommendation problems where the target dataset is too large to search over, we investigate generalizing hyperparameters settings from samples. We show that applying constrained hyperparameter optimization using only a 10% sample of the data still yields a 91% average improvement in hit rate over the default parameters when applied to the full datasets. Finally, we apply hyperparameters learned using our method of constrained optimization on a sample to the Who To Follow recommendation service at Twitter and are able to increase follow rates by 15%.
Most recent gains in visual recognition have originated from the inclusion of attention mechanisms in deep convolutional networks (DCNs). Because these networks are optimized for object recognition, they learn where to attend using only a weak form of supervision derived from image class labels. Here, we demonstrate the benefit of using stronger supervisory signals by teaching DCNs to attend to image regions that humans deem important for object recognition. We first describe a large-scale online experiment (ClickMe) used to supplement ImageNet with nearly half a million human-derived "top-down" attention maps. Using human psychophysics, we confirm that the identified top-down features from ClickMe are more diagnostic than "bottom-up" saliency features for rapid image categorization. As a proof of concept, we extend a state-of-the-art attention network and demonstrate that adding ClickMe supervision significantly improves its accuracy and yields visual features that are more interpretable and more similar to those used by human observers.
In this work we define formal grammars in terms of free monoidal categories, along with a functor from the category of formal grammars to the category of automata. Generalising from the Booleans to arbitrary semirings, we extend our construction to weighted formal grammars and weighted automata. This allows us to link the categorical viewpoint on natural language to the standard machine learning notion of probabilistic language model.
This paper reviews guidelines on how medical imaging analysis can be enhanced by Artificial Intelligence (AI) and Machine Learning (ML). In addition to outlining current and potential future developments, we also provide background information on chemical imaging and discuss the advantages of Explainable AI. We hypothesize that it is a matter of AI to find an invariably recurring parameter that has escaped human attention (e.g. due to noisy data). There is great potential in AI to illuminate the feature space of successful models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.