ABSTRACT. Sturgeons (Acipenser schrenckii) are of high evolutionary, economic, and conservation value, and caviar isone of the most valuable animal food products in the world. The Illumina HiSeq2000 sequencing platform was used to construct testicular and ovarian transcriptomes to identify genes involved in reproduction and sex determination in A. schrenckii. A total of 122,381 and 114,527 unigenes were obtained in the testicular and ovarian transcriptomes, respectively, with average lengths of 748 and 697 bp. A total of 46,179 genes were matched to the nonredundant nr database. GO (31,266), KEGG (39,712), and COG analyses (20,126) were performed to identify potential genes and their functions. Twenty-six gene families involved in reproduction and sex determination were identified from the A. schrenckii testicular and ovarian transcriptomes based on functional annotation of non-redundant transcripts and comparisons with the published literature. Furthermore, 1309 unigenes showed significant differences between the testes and ovaries, including 782 genes that were up-regulated in the testes and 527 that were upregulated in the ovaries. Eleven genes were involved in reproduction and sex determination mechanisms. Furthermore, 19,065 simple sequence repeats (SSRs) were identified in the expressed sequence tagged dataset, and 190,863 and 193,258 single nucleotide polymorphisms (SNPs) were obtained from the testicular and ovarian transcriptomic databases, respectively. This study provides new sequence information about A. schrenckii, which will provide a basis for the further study of reproduction and sex determination mechanisms in Acipenser species. The potential SSR and SNP markers isolated from the transcriptome may shed light on the evolution and molecular ecology of Acipenser species.
An 8-week growth trial was conducted to investigate the effects of dietary fish meal replacement with a vegetable mixture of soybean meal and rapeseed meal (1:1) on growth of juvenile red swamp crayfish. Nine isonitrogenous diets were designed: V0, V34, V50, V65, V73 and V81 with six levels of vegetable proteins, and VA48, VA63 and VA78 by further adding crystalline lysine and methionine into V50, V65 and V81.Compared with V0, V34 significantly improved the specific growth rate (SGR), while V65, V73, V81 and VA78 depressed the SGR (p < .05). Feeding rate showed a decreasing trend as dietary vegetable protein level increased (p < .05), except that in VA48 group. Significantly lower FCR and higher PER were observed in V34 group, whereas all vegetable protein diets depressed the feed utilization of crayfish (p < .05). Crayfish fed with diets containing vegetable proteins showed significantly lower hepatosomatic indices and higher condition factors than the control (p < .05). Muscle lipid content was significantly (p < .05) lowered in V81 group, but not in VA78 group. The results suggested that 338 g/kg vegetable protein improved growth performance of crayfish. Excessive vegetable protein depressed the growth of crayfish, which could be prevented by lysine and methionine supplementation except for the all vegetable protein diets.
K E Y W O R D Samino acids, crayfish, feed utilization, growth, muscle composition, vegetable protein How to cite this article: Tan Q, Song D, Chen X, Xie S, Shu X.Replacing fish meal with vegetable protein sources in feed for juvenile red swamp crayfish, Procambarus clarkii: Effects of amino acids supplementation on growth and feed utilization. Aquacult
Macroinvertebrate assemblages are structured by a number of abiotic and biotic factors interacting simultaneously. We investigated macroinvertebrate assemblages along gradients of human disturbance and morphometric characteristics in five lakes connected by the same stream. We aimed to assess the relative effects of environmental gradients on macroinvertebrate assemblages and to investigate whether water quality effects on the assemblages were correlated with buffer land use. There were significant differences in macroinvertebrate community compositions among lakes, and our results indicated that oligochaetes (mainly Limnodrilus) and insects (mainly Chironomus) contributed highly to the differences. We used redundancy analysis with variation partitioning to quantify the independent and combined anthropogenic effects of water quality and land use gradients on the macroinvertebrate community. The independent effect of water quality was responsible for 17% of the total variance in macroinvertebrate community composition, the independent effect of buffer land use accounted for 6% of variation, and the combined variation between land use change and water quality accounted for 12%. Our study indicated that both the independent effects of land use and within‐lake water quality can explain the influence in macroinvertebrate assemblages, with significant interactions between the two. This is rather important to notice that changes in buffer land use generally may alter nutrient inputs and thus severely affect abiotic conditions encountered by macroinvertebrate. Our study demonstrates that considering buffer zone effects explicitly may be significant in the selection and application of conservation and management strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.