Atomic clocks based on laser-cooled atoms are widely used as primary frequency standards. Deploying such cold atom clocks (CACs) in space is foreseen to have many applications. Here we present tests of a CAC operating in space. In orbital microgravity, the atoms are cooled, trapped, launched, and finally detected after being interrogated by a microwave field using the Ramsey method. Perturbing influences from the orbital environment on the atoms such as varying magnetic fields and the passage of the spacecraft through Earth’s radiation belt are also controlled and mitigated. With appropriate parameters settings, closed-loop locking of the CAC is realized in orbit and an estimated short-term frequency stability close to 3.0 × 10−13τ−1/2 has been attained. The demonstration of the long-term operation of cold atom clock in orbit opens possibility on the applications of space-based cold atom sensors.
Environmentally benign Bi3.25La0.75Ti3O12 (BLTO) thin film capacitors were prepared by a cost effective chemical solution deposition method for high energy density storage device applications. Low annealing temperature annealed BLTO thin films showed very slim hysteresis loops with high maximum and small remnant polarization values. Increasing the applied electric field to 2040 kV/cm, the optimized BLTO thin films show a high recoverable energy density of 44.7 J/cm3 and an energy efficiency of 78.4% at room temperature. Additionally, the BLTO thin film capacitors exhibited excellent fatigue endurance after 4 × 108 cycles and a good thermal stability up to 140 °C, proving their strong potential for high energy density storage and conversion applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.