The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for largescale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the AT-LAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, and the validation of the simulated output against known physics processes.
Contact lens wearing, either with soft lenses or the RGP lenses, causes changes in the wavefront aberrations of the eye. The changes in wavefront aberrations vary substantially from eye to eye. Although soft-CL wearing tends to induce more higher-order aberrations, RGP-CL effectively reduces the astigmatisms. Both soft-CL and RGP-CL induce more aberrations for the eyes that have low wavefront aberrations. The change in wavefront aberrations due to contact lens wearing may explain the changes in visual performance for contact lens wearers reported previously.
A 3D CdZnTe detector can provide 3D position information as well as energy information of each individual interaction when a gamma ray is scattered or absorbed in the detector. This unique feature provides the 3D CdZnTe detector the capability to do Compton imaging with a single detector. After detector calibration, real-time data acquisition and imaging are implemented with a single detector system. Because the detector has a finite size and any point in the detector can be the first scattering position, 3D gamma-ray imaging in near field is possible. In this work we will show the result of the 4π Compton imaging with a single 15mm × 15mm × 10mm CdZnTe detector. Different algorithms for sequence and imaging reconstruction will be addressed and compared. The angular uncertainty is estimated and the most recent results from measurements are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.