BackgroundResting-state functional magnetic resonance imaging studies using a regional homogeneity (ReHo) method have reported that amnestic mild cognitive impairment (aMCI) was associated with abnormalities in local functional connectivity. However, their results were not conclusive.MethodsSeed-based d Mapping was used to conduct a coordinate-based meta-analysis to identify consistent ReHo alterations in aMCI.ResultsWe identified 10 studies with 11 datasets suitable for inclusion, including 378 patients with aMCI and 435 healthy controls. This meta-analysis identified significant ReHo alterations in patients with aMCI relative to healthy controls, mainly within the default mode network (DMN) (bilateral posterior cingulate cortex [PCC], right angular gyrus, bilateral middle temporal gyri, and left parahippocampal gyrus/hippocampus), executive control network (right superior parietal lobule and dorsolateral prefrontal cortex), visual network (right lingual gyrus and left middle occipital gyrus), and sensorimotor network (right paracentral lobule/supplementary motor area, right postcentral gyrus and left posterior insula). Significant heterogeneity of ReHo alterations in the bilateral PCC, left parahippocampal gyrus/hippocampus, and right superior parietal lobule/angular gyrus was observed. Exploratory meta-regression analyses indicated that general cognitive function, gender distribution, age, and education level partially contributed to this heterogeneity.ConclusionsThis study provides provisional evidence that aMCI is associated with abnormal ReHo within the DMN, executive control network, visual network, and sensorimotor network. These local functional connectivity alterations suggest coexistence of functional deficits and compensation in these networks. These findings contribute to the modeling of brain functional connectomes and to a better understanding of the neural substrates of aMCI. Confounding factors merit much attention and warrant future investigations.Electronic supplementary materialThe online version of this article (10.1186/s40035-018-0134-8) contains supplementary material, which is available to authorized users.
Background: A number of studies have used regional homogeneity (ReHo) to depict local functional connectivity in chronic pain (CP). However, the findings from these studies were mixed and inconsistent. Methods: A computerized literature search will be performed in PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), WanFang, and SinoMed databases until June 15, 2019 and updated on March 20, 2020. This protocol will follow the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P). The Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software will be used for this voxel-wise meta-analysis. Results: This meta-analysis will identify the most consistent ReHo alterations in CP. Conclusions: To our knowledge, this will be the first voxel-wise meta-analysis that integrates ReHo findings in CP. This meta-analysis will offer the quantitative evidence of ReHo alterations that characterize brain local functional connectivity of CP. PROSPERO registration number: CRD42019148523
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.