While previous studies revealed that matrix vesicles (MV) contain a nucleational core (NC) that converts to apatite when incubated with synthetic cartilage lymph, the initial mineral phase present in MV is not well characterized. This study explored the physicochemical nature of this Ca 2؉ and P i -rich NC. MV, isolated from growth plate cartilage, were analyzed directly by solidstate 31 P NMR, or incubated with hydrazine or NaOCl to remove organic constituents. Other samples of MV were subjected to sequential treatments with enzymes, salt solutions, and detergents to expose the NC. We examined the NC using transmission electron microscopy, energy-dispersive analysis with x-rays, and electron and x-ray diffraction, Fourier transform-infrared spectroscopy, high performance thin-layer chromatographic analysis, and SDS-polyacrylamide gel electrophoresis. We found that most of the MV proteins and lipids could be removed without destroying the NC; however, NaOCl treatment annihilated its activity. SDS-polyacrylamide gel electrophoresis showed that annexin V, a phosphatidylserine (PS)-dependent Ca 2؉ -binding protein, was the major protein in the NC; high performance thin-layer chromatographic analysis revealed that the detergents removed the majority of the polar lipids, but left significant free cholesterol and fatty acids, and small but critical amounts of PS. Transmission electron microscopy showed that the NC was composed of clusters of ϳ1.0 nm subunits, which energy-dispersive analysis with x-rays revealed contained Ca and P i with a Ca/P ratio of 1.06 ؎ 0.01. Electron diffraction, x-ray diffraction, and Fourier transform-infrared analysis all indicated that the NC was noncrystalline.
The sagitta otolithic membrane of Fundulus heteroclitus consists of two different zones. A structured zone (gelatinous layer), which usually exhibits a reticulated or honeycomb-like architecture, is composed of tightly arranged fibrous material and covers only the sensory region of the macula. The gelatinous layer extends from the otolith surface to the tips of the sensory hairs, and probably functions primarily as a mechanoreceptor. The arrangement of this zone is closely associated with specific overlying structural features of the otolith surface and may also influence the pattern of mineral deposition to some degree. A nonstructured zone (subcupular meshwork) consists of fibers in very loose networks and covers both sensory and nonsensory regions of the macula. Over the sensory region, some of this fibrous material extends from the epithelial surface, through pores in the gelatinous layer, to the surface of the overlying otolith. In the nonsensory region, fibers of the subcupular meshwork are relatively more numerous and extend around the peripheral margin of the otolith. Evidence is presented which suggests that the fibrous material of the subcupular meshwork is incorporated into the otolith as an organic matrix constituent. New aspects on the ultrastructure of the otolith are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.