Ameboid microglia are isolated from the cerebral tissue of neonatal rat by selective cell adhesion to plastic. Histochemical markers show that the microglial preparations are homogeneous (95 +/- 3%) and represent a 10% yield from starting cultures. Isolated ameboid microglia contain nonspecific esterase activity, the macrophage surface antigens MAC-1 and MAC-3, and acetylated low-density lipoprotein receptors. Ameboid cells have functional properties similar to those of macrophages, including the ability to engulf 5 micron latex beads, to secrete Interleukin-1 (IL-1) and to release superoxide anion. Unlike monocytes and adherent spleen cells, ameboid microglia do not show peroxidase activity by histochemical stain. Unlike resident peritoneal macrophages, ameboid microglia proliferate in vitro. Scanning electron microscopy shows that ameboid cells have short, spinous processes that can be distinguished from the ruffled surfaces of body macrophages. Our observations suggest that ameboid microglia are a distinct class of mononuclear phagocytic cells. Retinoic acid and dimethyl sulfoxide, agents known to accelerate differentiation in vitro, stimulate ameboid cells to develop thin processes several hundred microns in length. These “process-bearing” microglia eventually lose the capacity to engulf latex beads and to proliferate. They also show reductions in nonspecific esterase activity and in the binding of acetylated low- density lipoprotein. We suggest that in vitro ameboid microglia differentiate into nonphagocytic cells similar to ramified microglia found in normal adult brain. The isolation techniques described here provide the opportunity to study the composition and function of different microglial subpopulations during the development of the CNS.
Mononuclear phagocytes (microglia, macrophages, and macrophage-like giant cells) are the principal cellular targets for human immunodeficiency virus-1 (HIV-1) in the central nervous system (CNS). Since HIV-1 does not directly infect neurons, the causes for CNS dysfunction in acquired immunodeficiency syndrome (AIDS) remain uncertain. HIV-1-infected human monocytoid cells, but not infected human lymphoid cells, released toxic agents that destroy chick and rat neurons in culture. These neurotoxins were small, heat-stable, protease-resistant molecules that act by way of N-methyl-D-aspartate receptors. Macrophages and microglia infected with HIV-1 may produce neurologic disease through chronic secretion of neurotoxic factors.
The interleukins, which have a regulatory role in immune function, may also mediate inflammation associated with injury to the brain. In experiments to determine the effect of these peptide hormones on glial cell proliferation in culture, interleukin-1 was a potent mitogen for astroglia but had no effect on oligodendroglia. Interleukin-2 did not alter the growth of either type of glial cell. Activity similar to that of interleukin-1 was detected in brains of adult rats 10 days after the brains had been injured. These findings suggest that interleukin-1, released by inflammatory cells, may promote the formation of scars by astroglia in the damaged mammalian brain.
By screening specific populations of rat brain cells, we found that ameboid microglia secrete an 18 kD peptide with IL-1 biological activity. The IL-1 activity released by microglia was found to be identical to rat macrophage IL-1 on fractionation by gel filtration and high pressure liquid anion-exchange chromatography, and it was neutralized by an antiserum specific for murine IL-1. When added to astroglia grown in culture, microglial IL-1 increased the cell number of five- to sevenfold, and increased astroglial incorporation of [3H]thymidine by three- to fivefold. We propose that the proliferation of astroglia in specific brain regions may be regulated by the signaled release of IL-1 from activated microglial cells.
Techniques for selective isolation, labeling, stimulation, and destruction of ameboid microglia allow study of some fundamental questions in neuroimmunology. Examination of surface morphology, proliferative capacity, and cytochemistry suggests that microglia are a class of brain mononuclear phagocytes distinct from blood monocytes, spleen macrophages, or resident peritoneal macrophages. Moreover, cultured ameboid microglia isolated from newborn brain can be induced to grow thin cytoplasmic projections several hundred microns in length; these process-bearing cells resemble a differentiated form of microglia found in adult brain. Ameboid microglia may contribute to brain inflammation by engulfing debris, by releasing cytotoxins, by killing neighboring cells, and by secreting astroglial growth factors. Importantly, ameboid microglia are closely tied to a network of immunomodulators that include colony-stimulating factors and Interleukin-1. The presence of activated microglia during normal embryogenesis and at sites of penetrating brain injury suggests that these cells serve as important effectors linking the immune system with growth and repair of the CNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.