Gold surfaces modified with C 3 -C 18 -alkanethiols (CH 3 (CH 2 ) X-1 SH; H X SH; x ) 3, 8, 12, 16, 18) and C 16alkanethiols, fluorinated at the outer 1, 2, 4, and 10 methylene positions (CF 3 (CF 2 ) Y-1 (CH 2 ) X SH; F y H x SH; y ) 1, x ) 15; y ) 2, x ) 14; y ) 4, x ) 12; y ) 10, x ) 6) were characterized by He(I) UV-photoelectron spectroscopy (UPS). (Detailed X-ray photoelectron spectroscopic characterization of the partially fluorinated thin films is given in the Supporting Information). Long incubation times of the gold surface with the alkanethiol solutions lead to compact monolayer films for all of the alkanethiols, as indicated by the exponential decrease in emission intensity versus alkyl chain length for both the gold Fermi edge (UPS data), and by a parallel decrease in Au(4f) photoemission intensity using X-ray photoelectron spectroscopy. Changes in the effective work function of these surfaces due to the presence of significant interfacial dipoles are observed (i) as alkyl chain length is increased, and (ii) as the fraction of fluorinated methylene groups is increased in a constant length alkyl chain. Negative shifts of the low kinetic energy photoemission edge with increasing alkyl chain length in the H x SH series are consistent with the presence of a large positive interface dipole. The largest part of this shift (ca. 1.0 eV) appears between the C 3 -and C 8 -alkyl chain lengths. Adding -CF x groups to the outer end of the C 16 -alkyl chain positively shifts the low-kinetic-energy photoemission edge, consistent with the presence of a large negative interface dipole that completely compensates for the positive dipole from the alkyl portion of the chain. Examining C 13 -C 16 alkyl chains fluorinated at only the outer methyl group shows that this negative dipole depends on the orientation of the -CF 3 group (i.e., "odd-even" effects in the effective work function are observed). Comparison of the shifts in gold/SAM vacuum level (changes in effective work function) as a function of the apparent dipole moment of the molecule provides an estimate of the band-edge offsets for these molecules on the gold surface, an estimate of the intrinsic shift in a vacuum level at zero dipole moment of the adsorbate, and an estimate of the intrinsic dipole moment for the gold-thiolate bond.
Surface characterization of indium−tin oxide (ITO) thin films has been carried out with monochromatic X-ray photoelectron spectroscopy (XPS) following various solution pretreatments, RF air plasma etching or high-vacuum argon-ion sputtering. Commercially available ITO films show high concentrations of hydrolyzed oxides and oxy-hydroxides in the near-surface region, along with stoichiometric oxide (In2O3, SnO2) and variable levels of oxygen defect sites. XPS revealed that solution and vacuum treatments changed both the relative surface coverage of the hydroxides and, to a lesser extent, the concentration of oxide defect sites in the near-surface region. These pretreatments have a significant effect on both the coverage and electron-transfer rates for chemisorbed ferrocene dicarboxylic acid (Fc(COOH)2), with the air-plasma-etched ITO showing the highest surface coverage of Fc(COOH)2 and an RCA treatment showing the highest electron-transfer rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.