We propose a new way of characterizing the complexity of online problems. Instead of measuring the degradation of the output quality caused by the ignorance of the future we choose to quantify the amount of additional global information needed for an online algorithm to solve the problem optimally. In our model, the algorithm cooperates with an oracle that can see the whole input. We define the advice complexity of the problem to be the minimal number of bits (normalized per input request, and minimized over all algorithmoracle pairs) communicated by the algorithm to the oracle in order to solve the problem optimally. Hence, the advice complexity measures the amount of problem-relevant information contained in the input. We introduce two modes of communication between the algorithm and the oracle based on whether the oracle offers an advice spontaneously (helper) or on request (answerer). We analyze the Paging and DiffServ problems in terms of advice complexity and deliver upper and lower bounds in both communication modes; in the case of DiffServ problem in helper mode the bounds are tight.
We propose a new way of characterizing the complexity of online problems. Instead of measuring the degradation of output quality caused by the ignorance of the future we choose to quantify the amount of additional global information needed for an online algorithm to solve the problem optimally. In our model, the algorithm cooperates with an oracle that can see the whole input. We define the advice complexity of the problem to be the minimal number of bits (normalized per input request, and minimized over all algorithm-oracle pairs) communicated between the algorithm and the oracle in order to solve the problem optimally. Hence, the advice complexity measures the amount of problem-relevant information contained in the input.We introduce two modes of communication between the algorithm and the oracle based on whether the oracle offers an advice spontaneously (helper) or on request (answerer). We analyze the Paging and DiffServ problems in terms of advice complexity and deliver tight bounds in both communication modes.
The complexity of systolic dissemination of information in interconnection networks Informatique théorique et applications, tome 28, n o 3-4 (1994), p. 303-342
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.