The study of mammalian gene expression is often carried out at the level of mRNA. In such analyses, one usually measures the amount of an mRNA of interest under different conditions such as stress, growth, development, cell and tissue localization or as part of an evaluation of the effects of gene transfection. A variety of techniques exist to measure gene expression and most commonly involve Northern hybridization analysis, ribonuclease protection or RT-PCR. Common to all of these assays is the inclusion of a so-called loading or internal control (i.e., analysis of an mRNA that does not change in relative abundance during the course of treatments). Here, we discuss the uses and pitfalls of the most popular of these controls, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin, with special emphasis on precautions associated with the use of GAPDH.
We previously showed a preferential degradation and down-regulation of mitochondrial DNA and RNA in hamster fibroblasts in response to hydrogen peroxide. Subsequent studies by others demonstrated that mitochondrial DNA can stimulate immune cells as a DAMP (damage associated molecular patterns) family member. However, the actual physical structure of this mitochondrial DNA DAMP and its importance in non-immune cell types are poorly understood. Here we report that transfected oxidant-initiated degraded mitochondrial polynucleotides, which we term "DeMPs", strongly induce the proinflammatory cytokines interleukin 6, monocyte chemotactic protein-1, and tumor necrosis factor α in mouse primary astrocytes. Additionally, proinflammatory IL1β was induced, implicating DeMPs in inflammasome activation. Furthermore, human cerebrospinal fluid (CSF) and plasma were found to contain detectable DeMP signal. Finally, significant degradation of mitochondrial DNA was observed in response to either a bolus or steady state hydrogen peroxide. Combined, these studies demonstrate, all for the first time, that a pathophysiologically relevant form of mitochondrial DNA (degraded) can elicit a proinflammatory cytokine induction; that a brain cell type (astrocytes) elicits a proinflammatory cytokine induction in response to these DeMPs; that this induction includes the inflammasome; that astrocytes are capable of inflammasome activation by DeMPs; that DeMPs are detectable in CSF and plasma; and that hydrogen peroxide can stimulate an early stage cellular degradation of mitochondrial DNA. These results provide new insights and are supportive of our hypothesis that DeMPs are a newly identified trigger of neurodegenerative diseases such as Alzheimer's disease, which are known to be associated with early stage inflammation and oxidation.
The ability of a cell, tissue, or organism to better resist stress damage by prior exposure to a lesser amount of stress is known as adaptive response. It is observed in all organisms in response to a number of different cytotoxic agents. One of these agents, oxidative stress, is known to induce an adaptive response in bacteria that is accompanied by the induction of many proteins. De novo protein synthesis is required for adaptive response to oxidative and other types of stress, indicating that newly synthesized protective proteins are necessary for adaptation. Adaptive response to oxidative stress also has been observed in mammalian cells. Several studies suggest it is necessary to first preexpose mammalian cells to a somewhat toxic oxidative stress in order to observe significant resistance to a subsequent highly lethal dose of oxidant. Cross-resistance of oxidatively stressed cells to other toxic agents including gamma- and X-irradiation, heat shock, aldehydes, heavy metals, MNNG, N-ethylmaleimide, and heme also has been reported. Understanding oxidant adaptive response in more detail and identifying the protective proteins involved may prove to be of clinical benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.