The study of mammalian gene expression is often carried out at the level of mRNA. In such analyses, one usually measures the amount of an mRNA of interest under different conditions such as stress, growth, development, cell and tissue localization or as part of an evaluation of the effects of gene transfection. A variety of techniques exist to measure gene expression and most commonly involve Northern hybridization analysis, ribonuclease protection or RT-PCR. Common to all of these assays is the inclusion of a so-called loading or internal control (i.e., analysis of an mRNA that does not change in relative abundance during the course of treatments). Here, we discuss the uses and pitfalls of the most popular of these controls, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin, with special emphasis on precautions associated with the use of GAPDH.
p53 limits the proliferation of primary diploid fibroblasts by inducing a state of growth arrest named replicative senescence -a process which protects against oncogenic transformation and requires integrity of the p53 tumour suppressor pathway [1][2][3] . However, little is known about the downstream target genes of p53 in this growth-limiting response. Here, we report that suppression of the p53 target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference (RNAi) leads to escape from replicative senescence both in primary mouse embryo fibroblasts and primary human BJ fibroblasts. PAI-1 knockdown results in sustained activation of the PI(3)K-PKB-GSK3β pathway and nuclear retention of cyclin D1, consistent with a role for PAI-1 in regulating growth factor signalling. In agreement with this, we find that the PI(3)K-PKB-GSK3β-cyclin D1 pathway is also causally involved in cellular senescence. Conversely, ectopic expression of PAI-1 in proliferating p53-deficient murine or human fibroblasts induces a phenotype displaying all the hallmarks of replicative senescence. Our data indicate that PAI-1 is not merely a marker of senescence, but is both necessary and sufficient for the induction of replicative senescence downstream of p53.Primary murine fibroblasts activate the p19 ARF -p53 tumour suppressor pathway during prolonged culturing in vitro, which induces a postmitotic state referred to as replicative senescence. Senescence can be overcome by loss of either p19 ARF , p53 or the combined loss of all three retinoblastoma family proteins 1,2 . Proliferation of fibroblasts is induced by growth factors which activate cyclin-dependent kinases (CDKs), and in turn inactivate pRb's growth-limiting ability 2 , a G1 cell-cycle checkpoint that is often deregulated in cancer 3 . It is unclear which of the many downstream p53-target genes is responsible for the p53-dependent induction of replicative senescence. An attractive candidate is the CDK inhibitor p21 CIP1. However, mouse embryo fibroblasts (MEFs) knocked out for p21 CIP1 are not immortal 4 . Here, we identify an unexpected causal role for the urokinase type plasminogen activator (uPA)-PAI-1 system in the induction of replicative senescence. The serpin and extra-cellular matrix (ECM)-associated protein PAI-1 is a direct target of p53 (ref. 5, 6), is upregulated in ageing fibroblasts in vivo and in vitro, and is considered a marker of replicative senescence 7-9 . PAI-1 inhibits the activity of the secreted protease uPA by forming a stable complex. uPA expression can cause cells to progress through G1 into S phase 10 , most likely through activating a mitogenic signalling cascade by increasing the bioavailability of growth factors.To investigate the role of PAI-1 in replicative senescence, two independent retroviral vectors were generated that targeted murine PAI-1 for suppression through RNAi (Fig. 1a). As inhibition of PAI-1 expression leads to activation of uPA 12,13 , we asked whether overexpression of uPA also caused immortalisation. Retrovirusme...
During development of TGF-β1-initiated fibroproliferative disorders, NADPH oxidases (NOX family members) generate reactive oxygen species (ROS) resulting in downstream transcription of a subset genes encoding matrix structural elements and profibrotic factors. Prominent among the repertoire of disease-implicated genes is the TGF-β1 target gene encoding the potent profibrotic matricellular protein plasminogen activator inhibitor-1 (PAI-1 or SERPINE1). PAI-1 is the major physiologic inhibitor of the plasmin-based pericellular cascade and a causative factor in the development of vascular thrombotic and fibroproliferative disorders. ROS generation in response to TGF-β1 stimulation is rapid and precedes PAI-1 induction; engagement of non-SMAD (e.g., EGFR, Src kinase, MAP kinases, p53) and SMAD2/3 pathways are both required for PAI-1 expression and are ROS-dependent. Recent findings suggest a novel role for p53 in TGF-β1-induced PAI-1 transcription that involves ROS generation and p53/SMAD interactions. Targeting ROS and ROS-activated cellular events is likely to have therapeutic implications in the management of fibrotic disorders, particularly in the context of prolonged TGF-β signaling.
Cellular migration, over simple surfaces or through complex stromal barriers, requires coordination between detachment/re-adhesion cycles, involving structural components of the extracellular matrix and their surface-binding elements (integrins), and the precise regulation of the pericellular proteolytic microenvironment. It is now apparent that several proteases and protease inhibitors, most notably urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1), also interact with several cell surface receptors transducing intracellular signals that significantly affect both motile and proliferative programs. These events appear distinct from the original function of uPA/PAI-1 as modulators of the plasmin-based proteolytic cascade. The multifaceted interactions of PAI-1 with specific matrix components (i.e., vitronectin), the low-density lipoprotein receptor-related protein-1 (LRP1), and the uPA/uPA receptor complex have dramatic consequences on the migratory phenotype and may underlie the pathophysiologic sequalae of PAI-1 deficiency and overexpression. This paper focuses on the increasingly intricate role of PAI-1 as a major mechanistic determinant of the cellular migratory phenotype.
Chronic kidney disease constitutes an increasing medical burden affecting 26 million people in the United States alone. Diabetes, hypertension, ischemia, acute injury, and urological obstruction contribute to renal fibrosis, a common pathological hallmark of chronic kidney disease. Regardless of etiology, elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling pathways initiated by angiotensin, glucose, and oxidative stress. Unilateral ureteral obstruction (UUO) is a useful and accessible model to identify mechanisms underlying the progression of renal fibrosis. Plasminogen activator inhibitor-1 (PAI-1), a major effector and downstream target of TGF-β1 in the progression of several clinically important fibrotic disorders, is highly up-regulated in UUO and causatively linked to disease severity. SMAD and non-SMAD pathways (pp60c-src, epidermal growth factor receptor [EGFR], mitogen-activated protein kinase, p53) are required for PAI-1 induction by TGF-β1. SMAD2/3, pp60c-src, EGFR, and p53 activation are each increased in the obstructed kidney. This review summarizes the molecular basis and translational significance of TGF-β1-stimulated PAI-1 expression in the progression of kidney disease induced by ureteral obstruction. Mechanisms discussed here appear to be operative in other renal fibrotic disorders and are relevant to the global issue of tissue fibrosis, regardless of organ site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.