HIGHLIGHTS Covalent organic frameworks (COFs) are first used in tumor photodynamic therapy BODIPY-decorated COFs are synthesized via bonding defects functionalization BODIPY-decorated COFs have excellent anti-tumor efficacy in vitro and in vivo COFs show great promise as nanoplatforms for biomedical applications
The aim of the present study was to characterize and quantify the numbers and expression levels of cells markers associated with dendritic cell (DC) maturation in small airways in current smokers and non-smokers with or without chronic obstructive pulmonary disease (COPD). Lung tissues from the following 32 patients were obtained during resection for lung cancer: Eight smokers with COPD, eight non-smokers with COPD, eight current smokers without COPD and eight non-smokers without COPD, serving as a control. The tissue sections were immunostained for cluster of differentiation (CD)83+ and CD1a+ to delineate mature and immature DCs, and chemokine receptor type 7 (CCR7+) to detect DC migratory ability. Myeloid DCs were collected from the lung tissues, and subsequently the CD83+ and CCR7+ expression levels in the lung myeloid DCs were detected using flow cytometry. The expression levels of CD83+, CD1a+ and CCR7+ mRNA in total lung RNA were evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Evident chronic bronchitis and emphysema pathological changes were observed in the lung tissues of patients with COPD. The results revealed that the numbers of CD83+ and CCR7+ DCs were reduced but the numbers of CD1a+ DCs were significantly increased in the COPD group as compared with the control group (P<0.05, respectively). Using RT-qPCR, the expression levels of CCR7+ and CD83+ mRNA were found to be reduced in the smokers with COPD as compared with the non-smokers without COPD group (P<0.05, respectively). Excessive local adaptive immune responses are key elements in the pathogenesis of COPD. Cigarette smoke may stimulate immune responses by impairing the homing of airway DCs to the lymph nodes and reduce the migratory potential of DCs. The present study revealed that COPD is associated with reduced numbers of mature CD83+ DCs and lower CCR7+ expression levels in small airways.
Circular RNA (circRNA) has been reported to have great scientific significance and clinical value in multiple cancers including colorectal cancer (CRC). However, the biological function of most circRNAs in CRC is still in its infancy. Herein, we discovered the differential expressed circRNAs (DECs) between CRC tissues and matched adjacent using deep RNA sequencing and further confirmed the DECs expression by combining with another Gene Expression Omnibus dataset. Furthermore, we validated the expression of the top four upregulated circRNAs (hsa_circ_0030632, hsa_circ_0004887, hsa_circ_ 0001550, and hsa_circ_0001681) in both of paired CRC tissues and CRC cell lines. Then, a circRNA/microRNA/messenger RNA regulatory network was established and the Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed these four circRNAs participated in various biological processed including apoptotic process and multiple metabolic processes. Moreover, based on the regulatory network, three bioactive compounds (pergolide, pivampicillin, and methylergometrine) for the treatment of CRC were also found. In conclusion, this study improved our understanding of circRNAs and may also facilitate the finding of promising targets and biomarkers in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.