Fusarium graminearum is a notorious pathogen that causes Fusarium head blight (FHB) in cereal crops. It produces secondary metabolites, such as deoxynivalenol, diminishing grain quality and leading to lesser crop yield. Many strategies have been developed to combat this pathogenic fungus; however, considering the lack of resistant cultivars and likelihood of environmental hazards upon using chemical pesticides, efforts have shifted toward the biocontrol of plant diseases, which is a sustainable and eco-friendly approach. Fengycin, derived from Bacillus amyloliquefaciens FZB42, was purified from the crude extract by HPLC and further analyzed by MALDI-TOF-MS. Its application resulted in structural deformations in fungal hyphae, as observed via scanning electron microscopy. In planta experiment revealed the ability of fengycin to suppress F. graminearum growth and highlighted its capacity to combat disease incidence. Fengycin significantly suppressed F. graminearum, and also reduced the deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and zearalenone (ZEN) production in infected grains. To conclude, we report that fengycin produced by B. amyloliquefaciens FZB42 has potential as a biocontrol agent against F. graminearum and can also inhibit the mycotoxins produced by this fungus.
Exercise training mitigates cardiac pathological remodeling and dysfunction caused by myocardial infarction (MI), but its underlying cellular and molecular mechanisms remain elusive. Our present study in an in vivo rat model of MI determined the impact of post-MI exercise training on myocardial fibrosis, mitochondrial biogenesis, antioxidant capacity, and ventricular function. Adult male rats were randomized into: (a) Sedentary control group; (b) 4-week treadmill exercise training group; (c) Sham surgery group; (d) MI group with permanent ligation of left anterior descending coronary artery and kept sedentary during post-MI period; and (e) post-MI 4-week exercise training group. Results indicated that exercise training significantly improved post-MI left ventricular function and reduced markers of cardiac fibrosis. Exercise training also significantly attenuated MI-induced mitochondrial damage and oxidative stress, which were associated with enhanced antioxidant enzyme expression and/or activity and total antioxidant capacity in the heart. Interestingly, the adaptive activation of the SIRT1/ PGC-1α/PI3K/Akt signaling following MI was further enhanced by post-MI exercise training, which is likely responsible for exercise-induced cardioprotection and mitochondrial biogenesis. In conclusion, this study has provided novel evidence on the activation of SIRT1/PGC-1α/PI3K/Akt pathway, which may mediate exerciseinduced cardioprotection through reduction of cardiac fibrosis and oxidative stress, as well as improvement of mitochondrial integrity and biogenesis in post-MI myocardium.
Background & Aims
Obesity promotes the development of nonalcoholic fatty liver diseases (NAFLDs), yet not all obese patients develop NAFLD. The underlying causes for this discrepancy remain elusive. LPGAT1 is an acyltransferase that catalyzes the remodeling of phosphatidylglycerol (PG), a mitochondrial phospholipid implicated in various metabolic diseases. Here, we investigated the role of LPGAT1 in regulating the onset of diet-induced obesity and its related hepatosteatosis because polymorphisms of the
LPGAT1
gene promoter were strongly associated with susceptibility to obesity in Pima Indians.
Methods
Mice with whole-body knockout of LPGAT1 were generated to investigate the role of PG remodeling in NAFLD.
Results
LPGAT1 deficiency protected mice from diet-induced obesity, but led to hepatopathy, insulin resistance, and NAFLD as a consequence of oxidative stress, mitochondrial DNA depletion, and mitochondrial dysfunction.
Conclusions
This study identified an unexpected role of PG remodeling in obesity, linking mitochondrial dysfunction to NAFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.