In order to develop an efficient and broad-spectrum bactericide, a series of novel capsaicin derivatives containing a sulfonic acid esters moiety was synthesized. The structure of these compounds were confirmed by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrum (HRMS). The results of the bioactivities revealed that some target compounds exhibited remarkable antibacterial activity. Compound 3b exhibited the highest activities against Pseudomonas syringae pv. actinidiae (Psa), Xanthomonas oryzae pv. oryzae (Xoo), and Xanthomonas axonopodis pv. citri (Xac), and the values were 86, 54, and 92% at 50 μg/ml, respectively, which were higher than were for thiodiazole copper (87, 34, and 77%) and bismerthiazol (87, 37 and 75%). Although some compounds also showed certain activity against Spodoptera frugiperda, it was weaker than the positive controls monosultap and mulfoxaflor. Thus, the bioassay results recommend that these newly designed and synthesized scaffolds should be used as a bactericide lead compound rather than an insecticide lead compound.
The crop loss caused by bacteria has increased year by year due to the lack of effective control agents. In order to develop efficient, broad-spectrum, and structurally simple agricultural bactericide, the structure of piperonylic acid was modified and a series of novel piperonylic acid derivatives containing a sulfonic acid ester moiety was synthesized. Bioassay results indicated the compounds exhibited significantly antibacterial activities. Among them, compound 41 exhibited excellent antibacterial activities against Pseudomonas syringae pv. Actinidiae (Psa), with inhibitory value 99 and 85% at 100 μg/ml and 50 μg/ml, respectively, which was higher than that of thiodiazole-copper (84 and 77%) and bismerthiazol (96 and 78%). In addition, some compounds also showed moderate insecticidal activity against Spodoptera frugiperda. The abovementioned results confirm the broadening of the application of piperonylic acid, with reliable support for the development of novel agrochemical bactericide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.