Background Long intergenic non-coding RNAs (lincRNAs) are capable of regulating several tumours, while competitive endogenous RNA (ceRNA) networks are of great significance in revealing the biological mechanism of tumours. Here, we aimed to study the ceRNA network of lincRNA in glioblastoma (GBM). Methods We obtained GBM and normal brain tissue samples from TCGA, GTEx, and GEO databases, and performed weighted gene co-expression network analysis and differential expression analysis on all lincRNA and mRNA data. Subsequently, we predicted the interaction between lincRNAs, miRNAs, and target mRNAs. Univariate and multivariate Cox regression analyses were performed on the mRNAs using CGGA data, and a Cox proportional hazards regression model was constructed. The ceRNA network was further screened by the DEmiRNA and mRNA of Cox model. Results A prognostic prediction model was constructed for patients with GBM. We assembled a ceRNA network consisting of 18 lincRNAs, 6 miRNAs, and 8 mRNAs. Gene Set Enrichment Analysis was carried out on four lincRNAs with obvious differential expressions and relatively few studies in GBM. Conclusion We identified four lincRNAs that have research value for GBM and obtained the ceRNA network. Our research is expected to facilitate in-depth understanding and study of the molecular mechanism of GBM, and provide new insights into targeted therapy and prognosis of the tumour.
BackgroundLong intergenic non-coding RNAs (lincRNAs) are capable of regulating several tumours, while competitive endogenous RNA (ceRNA) networks are of great significance in revealing the biological mechanism of tumours. Currently, there is a dearth of studies on the ceRNA network of lincRNAs in glioblastoma (GBM), which we aimed to assess in the present study. MethodsWe obtained GBM and normal brain tissue samples from TCGA, GTEx, and GEO databases, and performed weighted gene co-expression network analysis and differential expression analysis on all lincRNA and mRNA data. Subsequently, we predicted the interaction between lincRNAs, miRNAs, and target mRNAs. Univariate and multivariate Cox regression analyses were performed on the mRNAs using CGGA data, and a Cox proportional hazards regression model was constructed. ResultsAccording to the Cox model, we assembled a ceRNA network consisting of 23 lincRNAs, 14 miRNAs, and 13 mRNAs. Gene Set Enrichment Analysis was carried out on four lincRNAs with obvious differential expressions and relatively few studies in GBM. ConclusionWe identified four lincRNAs that have the most research values for GBM and obtained the ceRNA network. Our research is expected to facilitate in-depth understanding and study of the molecular mechanism of GBM, and provide new insights into targeted therapy and prognosis of the tumour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.