The development of photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) has received considerable attention since its introduction in 2014. Expanding on many of the advantages of traditional ATRP, O-ATRP allows well-defined polymers to be produced under mild reaction conditions using organic photoredox catalysts. As a result, O-ATRP has opened access to a range of sensitive applications where the use of a metal catalyst could be of concern, such as electronics, certain biological applications, and the polymerization of coordinating monomers. However, key limitations of this method remain and necessitate further investigation to continue the development of this field. As such, this review details the achievements made to-date as well as future research directions that will continue to expand the capabilities and application landscape of O-ATRP. CONTENTS 4.5. Styrene and 4-Vinylpyridine 4.6. Vinyl Cyclopropanes 4.7. Other Monomers 5. Applications of O-ATRP 5.1. Synthesis of Block Copolymers 5.2. Synthesis of Graft Polymers 5.3. Synthesis of Hyperbranched Polymers 5.4. Synthesis of Star Polymers 5.5. Surface-initiated O-ATRP 5.6. Synthesis of Polymers in Continuous Flow 5.7. Metal Sensitive Applications of O-ATRP 6. Conclusions and Future Directions Author Information Corresponding Author Author Notes Biographies Acknowledgments References
Organocatalyzed ATRP (O-ATRP) is a growing field exploiting organic chromophores as photoredox catalysts (PCs) that engage in dissociative electron transfer (DET) activation of alkyl halide initiators following absorption of light. Characterizing DET rate coefficients (k act ) and photochemical yields across various reaction conditions and PC photophysical properties will inform catalyst design and efficient use during polymerization. The studies described herein consider a class of phenoxazine PCs where synthetic handles of core-substitution and N-aryl substitution enable tunability of the electronic and spin character of the catalyst excited state as well as DET reaction driving force ( ). Using Stern-Volmer quenching experiments through variation of diethyl 2-bromo-2-methylmalonate (DBMM) initiator concentration, collisional quenching is
Photoinduced organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization methodology catalyzed by organic photoredox catalysts (PCs). In an efficient O-ATRP system, good control over molecular weight with an initiator efficiency (I* = M n,theo /M n,exp × 100%) near unity is achieved, and the synthesized polymers possess a low dispersity (Đ). N,N-Diaryl dihydrophenazine catalysts typically produce polymers with low dispersity (Đ < 1.3) but with less than unity molecular weight control (I* ∼ 60−80%). This work explores the termination reactions that lead to decreased control over polymer molecular weight and identifies a reaction leading to radical addition to the phenazine core. This reaction can occur with radicals generated through reduction of the ATRP initiator or the polymer chain end. In addition to causing a decrease in I*, this reactivity modifies the properties of the PC, ultimately impacting polymerization control in O-ATRP. With this insight in mind, a new family of core-substituted N,N-diaryl dihydrophenazines is synthesized from commercially available ATRP initiators and employed in O-ATRP. These new core-substituted PCs improve both I* and Đ in the O-ATRP of MMA, while minimizing undesired side reactions during the polymerization. Further, the ability of one core-substituted PC to operate at low catalyst loadings is demonstrated, with minimal loss of polymerization control down to 100 ppm (weight average molecular weight [M w ] = 10.8 kDa, Đ = 1.17, I* = 104% vs M w = 8.26, Đ = 1.10, I* = 107% at 1000 ppm) and signs of a controlled polymerization down to 10 ppm of the catalyst (M w = 12.1 kDa, Đ = 1.36, I* = 107%).
Radical cations of photoredox catalysts used in organocatalyzed atom transfer radical polymerization (O-ATRP) have been synthesized and investigated to gain insight into deactivation in O-ATRP. The stability and reactivity of these compounds were studied in two solvents, N,N-dimethylacetamide and ethyl acetate, to identify possible side reactions in O-ATRP and to investigate the ability of these radical cations to deactivate alkyl radicals. A number of other factors that could influence deactivation in O-ATRP were also probed, such as ion pairing with the radical cations, radical cation oxidation potential, and halide oxidation potential. Ultimately, these studies enabled radical cations to be employed as reagents during O-ATRP to demonstrate improvements in polymerization control with increasing radical cation concentrations. In the polymerization of acrylates, this approach enabled superior molecular weight control, a decrease in polymer dispersity from 1.90 to 1.44, and an increase in initiator efficiency from 78 to 102%. This work highlights the importance of understanding the mechanism and side reactions of O-ATRP, as well as the importance of catalyst radical cations for successful O-ATRP.
Phenochalcogenazines such as phenoxazines and phenothiazines have been widely employed as photoredox catalysts (PCs) in small molecule and polymer synthesis. However, the effect of the chalcogenide in these catalysts has not been fully investigated. In this work, a series of four phenochalcogenazines is synthesized to understand how the chalcogenide impacts catalyst properties and performance. Increasing the size of the chalcogenide is found to distort the PC structure, ultimately impacting the properties of each PC. For example, larger chalcogenides destabilize the PC radical cation, possibly resulting in catalyst degradation. In addition, PCs with larger chalcogenides experience increased reorganization during electron transfer, leading to slower electron transfer. Ultimately, catalyst performance is evaluated in organocatalyzed atom transfer radical polymerization and a photooxidation reaction for C(sp 2 )À N coupling. Results from these experiments highlight that a balance of PC properties is most beneficial for catalysis, including a long-lived excited state, a stable radical cation, and a low reorganization energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.