A pot experiment was conducted to investigate the effect of biochar-compost on availability of P for maize cultivation in a concretionary Lixisol of northern Ghana and residual soil characteristics thereof. Sawdust biochar was co-composted with kitchen waste and cow dung in various proportions. Four biochar-composts were selected based on their superior carbon and available P content, lower pH, and electrical conductivity (EC). These were amended to attain the standard phosphorus requirement (SPR) and half the SPR of the Lixisol. Triple superphosphate and (NH4)2 SO4 were, respectively, applied as inorganic fertilizer to meet the SPR and the average total nitrogen of the selected biochar-compost treatments. A control without any soil amendment was included. Maize was grown to tasseling (eight weeks) and shoot dry matter and P uptake determined. A 2.71 to 3.71-fold increase in P uptake led to a 1.51 to 2.33-fold increase in shoot dry matter in biochar-compost-amended soils over the control. Residual soil C, pH, and total and available P in the biochar-compost-amended soils were enhanced. Biochar-composts at half the SPR level produced maize with higher shoot dry matter than the equivalent inorganic amendment at full SPR.
Carbon materials and their allotropes have been involved significantly in our daily lives. Zero-dimensional (0D) fullerenes, one-dimensional (1D) carbon materials, and two-dimensional (2D) graphene materials have distinctive properties and thus received immense attention from the early 2000s. To meet the growing demand for these materials in applications like energy storage, electrochemical catalysis, and environmental remediation, the special category, i.e., three-dimensional (3D) structures assembled from graphene sheets, has been developed. Graphene oxide is a chemically altered graphene, the desired building block for 3D graphene matter (i.e., 3D graphene macrostructures). A simple synthesis route and pore morphologies make 3D reduced-graphene oxide (rGO) a major candidate for the 3D graphene group. To obtain target-specific 3D rGO, its synthesis mechanism plays an important role. Hence, in this article, we will discuss the general mechanism for 3D rGO synthesis, vital procedures for fabricating advanced 3D rGO, and important aspects controlling the growth of 3D rGO.
Agriculture is an important component of the concept of sustainable development. Given the projected population growth, sustainable agriculture must accomplish food security while also being economically viable, socially responsible, and having the least possible impact on biodiversity and natural ecosystems. Deep learning has shown to be a sophisticated approach for big data analysis, with several successful cases in image processing, object identification, and other domains. It has lately been applied in food science and engineering. Among the issues and concerns addressed by these systems were food recognition; quality detection of fruits, vegetables, meat, and aquatic items; food supply chain; and food contamination. In precision agriculture, Artificial Intelligence (AI) is a commonly used technology for estimating food quality. It is especially important when evaluating crops at different phases of harvest and postharvest. Crop disease and damage detection is a high-priority activity because some postharvest diseases or damages, such as decay, can destroy crops and produce poisons that are toxic to humans. In this paper, we use Convolutional Neural Networks (CNNs)-based U-Net, DeepLab, and Mask R-CNN models to detect and predict postharvest deterioration zones in stored apple fruits. Our approach is unique in that it segmented and predicted postharvest decay and nondecay zones in fruits separately. This review will focus on postharvest physiology and management of fruits and vegetables, including harvesting, handling, packing, storage, and hygiene, to reduce postharvest loss (PHL) and improve crop quality. It will also cover postharvest handling under extreme weather conditions and potential impacts of climate change on vegetable postharvest and postharvest biotechnology on PHL.
Chlorpyrifos belongs to an organophosphate pesticides group that is frequently used to increase the yield of crops by controlling plant and pests-related diseases. Chlorpyrifos contaminates the environment and cause diseases to the human population. Molecularly imprinting technology lead to the development of molecularly imprinted polymers having templated oriented cavities with high selectivity, sensitivity, stability, and portability. Our review article aims to provide a collective study related to pesticides detection through molecularly imprinted polymers with existed constraints and necessary potential facets are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.